623 research outputs found

    Higgs--mediated K -> pi nu nu-bar in the MSSM at large tan(beta)

    Full text link
    We analyze the impact of Higgs-mediated amplitudes on the rare decays KL -> pi0 nu nu-bar and K+ -> pi+ nu nu-bar in the MSSM with large tan(beta) and general flavour mixing. We point out that, going beyond the minimal flavour violation hypothesis, Z-penguin amplitudes generated by charged-Higgs exchange can induce sizable modifications of K -> pi nu nu-bar rates. Interestingly, these effects scale as tan^4(beta) at the amplitude level. For large values of tan(beta), this mechanism allows deviations from the SM expectations even for tiny (CKM-type) off-diagonal mixing terms in the right-handed squark sector.Comment: 9 pages, 2 figure

    Anomalous diffusion originated by two Markovian hopping-trap mechanisms

    Get PDF
    We show through intensive simulations that the paradigmatic features of anomalous diffusion are indeed the features of a (continuous-time) random walk driven by two different Markovian hopping-trap mechanisms. If p∈(0,1/2)p \in (0,1/2) and 1−p1-p are the probabilities of occurrence of each Markovian mechanism, then the anomalousness parameter ÎČ∈(0,1)\beta \in (0,1) results to be ÎČ≃1−1/{1+log⁥[(1−p)/p]}\beta \simeq 1 - 1/\{1 + \log[(1-p)/p]\}. Ensemble and single-particle observables of this model have been studied and they match the main characteristics of anomalous diffusion as they are typically measured in living systems. In particular, the celebrated transition of the walker's distribution from exponential to stretched-exponential and finally to Gaussian distribution is displayed by including also the Brownian yet non-Gaussian interval.BERC 2018–2021 BERC 2022–2025 MOSAIC project DIT.AD004.14

    Higgs-Mediated tau --> mu and tau --> e transitions in II Higgs doublet Model and Supersymmetry

    Full text link
    We study the phenomenology of the mu-tau and e-tau lepton flavour violation (LFV) in a general two Higgs Doublet Model (2HDM) including the supersymmetric case. We consider several LFV decay modes of the charged fermion tau, namely tau-> l_jgamma, tau->l_j l_k l_k and tau-> l_jeta. The predictions and the correlations among the rates of the above processes are computed. In particular, it is shown that tau->l_jgamma processes are the most sensitive channels to Higgs-mediated LFV specially if the splitting among the neutral Higgs bosons masses is not below the 10% level.Comment: v2=published version: 13 pages, 4 figures, text improved and reference added. Two loop effects (relevant for tau->l_jgamma) added. Conclusions unchange

    Radiative lepton flavor violating decays in the Randall Sundrum background with localized leptons

    Get PDF
    We study the radiative lepton flavor violating l_i -> l_j\gamma decays in the two Higgs doublet model, respecting the Randall Sundrum scenario and estimate the contributions of the KK modes of left (right) handed charged lepton doublets (singlets) on the branching ratios. We observe that the branching ratios are sensitive to the contributions of the charged lepton KK modes.Comment: 23 pages, 10 figures, 2 table

    Fractional Diffusion and Medium Heterogeneity: The Case of the Continuos Time Random Walk

    Get PDF
    In this contribution we show that fractional diffusion emerges from a simple Markovian Gaussian random walk when the medium displays a power-law heterogeneity. Within the framework of the continuous time random walk, the heterogeneity of the medium is represented by the selection, at any jump, of a different time-scale for an exponential survival probability. The resulting process is a non-Markovian non-Gaussian random walk. In particular, for a power-law distribution of the time-scales, the resulting random walk corresponds to a time-fractional diffusion process. We relates the power-law of the medium heterogeneity to the fractional order of the diffusion. This relation provides an interpretation and an estimation of the fractional order of derivation in terms of environment heterogeneity. The results are supported by simulations

    Gaussian processes in complex media: new vistas on anomalous diffusion

    Get PDF
    Normal or Brownian diffusion is historically identified by the linear growth in time of the variance and by a Gaussian shape of the displacement distribution. Processes departing from the at least one of the above conditions defines anomalous diffusion, thus a nonlinear growth in time of the variance and/or a non-Gaussian displacement distribution. Motivated by the idea that anomalous diffusion emerges from standard diffusion when it occurs in a complex medium, we discuss a number of anomalous diffusion models for strongly heterogeneous systems. These models are based on Gaussian processes and characterized by a population of scales, population that takes into account the medium heterogeneity. In particular, we discuss diffusion processes whose probability density function solves space- and time-fractional diffusion equations through a proper population of time-scales or a proper population of length-scales. The considered modeling approaches are: the continuous time random walk, the generalized gray Brownian motion, and the time-subordinated process. The results show that the same fractional diffusion follows from different populations when different Gaussian processes are considered. The different populations have the common feature of a large spreading in the scale values, related to power-law decay in the distribution of population itself. This suggests the key role of medium properties, embodied in the population of scales, in the determination of the proper stochastic process underlying the given heterogeneous medium.This research was supported by the Basque Government through the BERC 2014–2017 and BERC 2018–2021 programs, and by the Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditations SEV- 2013-0323 and SEV-2017-0718 and through project MTM2016- 76016-R MI

    Langevin equation in complex media and anomalous diffusion

    Get PDF
    The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle’s dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.V.S. acknowledges BCAM Internship Program, Bilbao, for the financial support to her internship research period during which she developed her master’s thesis research useful for her master’s degree in Physics at University of Bologna. S.V. acknowledges the University of Bologna for the financial support through the ‘Marco Polo Programme’ for her PhD research period abroad spent at BCAM, Bilbao, useful for her PhD degree in Physics at University of Bologna. P.P. acknowledges financial support from Bizkaia Talent and European Commission through COFUND scheme, 2015 Financial Aid Program for Researchers, project number AYD–000–252 hosted at BCAM, Bilbao

    Microwave-assisted vacuum synthesis of tio2 nanocrystalline powders in one-pot, one-step procedure

    Get PDF
    A new method for fast and simple synthesis of crystalline TiO2 nanoparticles with photocat-alytic activity was developed by carrying out a classic sol–gel reaction directly under vacuum. The use of microwaves for fast heating of the reaction medium further reduces synthesis times. When the solvent is completely removed by vacuum, the product is obtained in the form of a powder that can be easily redispersed in water to yield a stable nanoparticle suspension, exhibiting a comparable photocatalytic activity with respect to a commercial product. The present methodology can, therefore, be considered a process intensification procedure for the production of nanotitania
    • 

    corecore