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1. Complexity as emergence of self-organization

The interest towards self-organized and cooperative systems
has rapidly increased in recent years. This is largely due to the
recent availability of large data-sets where the links among data
can be easily described in terms of a network with complex link
topology and structure. Important examples of complex net-
works are social networks (e.g., the web) and the -omics emerg-
ing in several research fields such as biology (proteomics, ge-
nomics, metabolic networks), neurophysiology (connectomics)
and physics (condensed matter). This has triggered an increas-
ing interest towards the dynamics of complex networks. This
hot research field is sometimes denoted as complexity science.
Actually, a definition of a complex system that is universally ac-
cepted by the scientific community does not yet exist, but there
are some basic features that are recognized to characterize com-
plex systems. Firstly, a complex system is multi-component,
i.e. it is composed of many degrees of freedom: many indi-
viduals, particles, units or, in general, many sub-systems that
are embedded in a network of strong nonlinear interactions. A
complex system is often described as a network with a given set
of nodes that interact by means of a set of links with complex
topology. This aspect explains why statistical physics and net-
work science have been the first research fields with a rapidly
increasing interest towards complexity.
It is worth noting that the presence of many degrees of freedom
and nonlinearity is not sufficient to get a complex behaviour.
In a complex system the nonlinear dynamics must be coopera-
tive, thus giving rise to the so-called emergent properties, and
this seems to be the most peculiar and crucial feature charac-
terizing complexity. Emergent properties are associated with
the emergence of self-organized or coherent structures. These
structures are states of the system whose temporal and spatial
scale spectra (or, equivalently, long-range time-space correla-
tions) cannot be represented as a simple function of external
forcing or derived by the microscopic dynamics through some
coarse graining procedure. In other words, it is not possible to
link the large temporal, spatial and/or topological scales of self-
organized structures with the correspondent small scales of the
micro-dynamics. In summary, a multi-component system can
be considered ”complex” when its dynamics trigger the emer-
gence of self-organized structures, so that the typical approach
to complexity is focused on identifying self-organized struc-

tures, on their analysis and description, and on the modeling of
their dynamical evolution.

Power-law, anomalous diffusion and intermittency in self-
organization

A system that can be decomposed into independent sys-
tems, which is the opposite concept of self-organization, is
characterized by exponential behavior, or sum of exponen-
tials. Then, self-organization is expected to be associated with
non-exponential behavior. More precisely, the self-organizing
mechanism is usually related to a scale-free condition determin-
ing the emergence of self-similarity and fractality. For this rea-
son, the most ubiquitous features found in self-organized com-
plex systems are given by: power-law behavior, e.g., long-range
time and/or space correlations, scale-free distribution of some
quantity such as the average degree of nodes in a complex net-
work, avalanche size in self-organized critical systems, cluster
size in percolation. A fundamental aspect of complex systems
is related to the transport properties, which are usually charac-
terized by anomalous scaling, i.e., non-linear time dependence
in the growth of the variance. This condition is also known
as anomalous diffusion. Another aspect often found in com-
plexity is a property known as metastability. In fact, emerging
self-organized, long-lived, structures are often metastable and
characterized by a sequence of short-time events marking their
birth and death. Consequently, the dynamics of this class of
complex systems are characterized by a birth-death intermittent
process of cooperation, which is modeled through a renewal
point process [1]. This important property is often found in bi-
ological complex systems and it is characterized by a fractal
(inverse power-law) distribution of the inter-event times (see,
e.g, [2, 3, 4, 5]).

2. Complexity: a survey of recent findings and modeling
approaches

Without any claim of being complete, this Special Issue is a col-
lection of papers giving a brief account of some recent findings
and modeling approaches in the field of complexity science.

Stochastic modeling and noise in complexity
In papers [13, 14, 15, 16, 17] the modeling approach to com-

plexity is based on the theory of stochastic processes. All these
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papers, with the exception of the last one, are based on the stan-
dard or generalized Langevin equation. Depending on the spe-
cific application, the noise terms can be interpreted as the effect
of self-organization, of an external environment or of thermal
fluctuations. In the first case the noise term is typically long-
range correlated. In some of the proposed models the authors
also study the combined effect of different noise sources.
In paper [13] the role of noise in three different nonlinear
relaxation processes is discussed. In particular, the authors
give a brief review of noise-induced phenomena in far-from-
equilibrium systems, with particular attention to condensed
matter complex systems. In one of the considered systems the
dynamics, given by a perturbed stochastic sine-Gordon equa-
tion, is characterized by switching events between a supercon-
ducting metastable and a resistive state.
In paper [14] the authors study the application of a multi-
particle Monte Carlo modeling approach to the non-linear trans-
port of electrons inside a semiconductor bulk. The fluctuating
electric field is modeled as a Gaussian correlated noise, trigger-
ing the emergence of cooperative behaviour of electrons, which
self-organize among different valleys. This has the counter-
intuitive effect of reducing the intrinsic noise. The authors un-
derline the interplay among internal time scales, related to elec-
tron dynamical response, and external time scales, related to
the fluctuating electric field, in the emergence of complex self-
organized structures.
An ubiquitous feature observed in many complex systems is
power-law statistics. This aspect is theoretically investigated
in paper [15] by means of a stochastic modeling approach. In
order to describe anomalous diffusion occurring in complex dy-
namical systems, the authors investigate a nonlinear Langevin
model driven by a Lévy stable noise. This model is shown to
generate signals exhibiting power-law decay in statistical prop-
erties such as the steady state probability distribution and the
1/ f β power spectrum.
In paper [16] a “generalized Langevin equation with a power-
law-type memory kernel is used to model the complex struc-
ture of the viscoelastic media”. The superposition of different
kind of noise terms is studied: a multiplicative white Gaussian
noise, an internal fractional Gaussian noise and an additive ex-
ternal white noise. This work is an interesting example of how
a stochastic force (noise) can modify the behaviour of nonequi-
librium complex systems in a counter-intuitive way. In partic-
ular, the authors investigate the interplay of memory and of the
shear fluid flow on the cross-correlation functions of harmon-
ically trapped Brownian particles, finding the important effect
of memory-induced sign reversals.
The authors of paper [17] discuss the effects of a Poisson point
process, which is seen as a sort of additive “noise” term, on
a complex signal characterized by fractal intermittency. The
complex signal is represented as a telegraph signal, i.e., a di-
chotomous signal that can assume only two states, but with a
power-law distribution of transition times. When considering
the diffusion process associated with this intermittent signal,
long-time normal diffusion is found even if the complex signal
would generate anomalous diffusion, but a signature of the un-
derlying complex signals is seen in the scaling of the diffusivity

coefficient with the exponent of the time distribution.

Complexity in heterogeneous systems
Papers [18, 19, 20, 21, 22, 23] are mainly devoted to anoma-
lous transport in complex media and complex materials, from
complex fluids to porous media. In these systems complexity
is intimately connected with some physical properties that are
heterogeneously distributed, even if, in some applications, the
medium can be considered statistically homogeneous (see pa-
per [20]).
The authors of paper [18] discuss the self-organizing character
of two-dimensional turbulence by using a stochastic Lagrangian
approach. They show that self-organization is associated with
trajectory trapping, being a typical particle trajectory character-
ized by a random sequence of long (non-Gaussian) jumps and
trapping events. This is intimately connected to the anomalous
behaviour of transport coefficients. Anomalous transport and
particle trapping are associated with the well-known inverse en-
ergy cascade (from small to large scales), which determine the
emergence of large scale quasi-coherent vortices, being coher-
ence identified by the presence of long range correlation with
slow power-law decay.
Paper [19] is devoted to the same problem, but here the authors
investigate the self-organizing of the vorticity field by compar-
ing a statistical approach with a field-theoretical formulation. In
both papers it is explained that the self-organizing mechanism,
intimately connected to the inverse energy cascade, is given by
the attraction of large scale vortices on the small scale vortices
of the same sign (clusterization of like-sign vorticity), thus gen-
erating a sort of coalescence dynamics in the vorticity field.
Paper [20] illustrates a model of impurity transport in a porous
medium. The authors make evident the role of the detailed non-
homogeneous structure of the medium, even if statistically ho-
mogeneous, in the emergence of power-law behaviour, scaling
and anomalous transport. This work is an interesting example
of complex (power-law) behaviour determined by the heteroge-
neous structure of an underlying complex medium where par-
ticle transport takes place. In these systems, local transport is
normal and given by standard advection and diffusion, while the
global observed behaviour is a sum over all the heterogeneous
regions.
It is worth mentioning that a similar approach, i.e., the random
slow modulation of a parameter due to a non-homogeneous,
disordered environment, is the basis of the well-known super-
statistics [10, 11], where the global statistics is derived by a
linear average computed over the parameter distribution. If
complexity should be identified with the emergence of self-
organized structures, it could be questionable if heterogeneous
systems should be considered complex. In our opinion, they
could be included considering that the underlying complex
structure of the medium has been generated by some cooper-
ative dynamics and is typically characterized by fractal proper-
ties. In this sense, the fractal heterogeneity of the medium is
a manifestation of complexity triggering anomalous scaling in
the transport properties.
Superstatistics was proposed to be a rigorous way to derive
Tsallis statistics from a dynamical model [12]. The Tsallis dis-

2



tribution is in fact the main topic of paper [21], where the au-
thors discuss the ubiquitous presence of quasi-power law dis-
tributions in multiparticle production processes. In fact, the
Tsallis distribution is essentially a inverse power-law function
for large values and it was derived in the framework of a non-
equilibrium statistical model involving the minimization of a
non-extensive entropy (see discussion and references in paper
[21]). The Tsallis entropy and distribution represent an attempt
to build a non-standard statistical mechanics for complex sys-
tems, and superstatistics proved to be compatible with systems
whose complexity originates from non-homogeneity of some
physical parameter in the medium supporting the anomalous
transport. It is not yet clear if this picture is in agreement with
other modeling approaches, such as the fractional one (see [8, 9]
and the comment to papers [24, 25] reported below).
Paper [22] illustrates the application of kinetic theory and hy-
drodynamic equations to a granular binary mixture, which is an
interesting prototype of complexity. In fact, granular fluid flows
are not only “composed of many degrees of freedom (many
particles) that are embedded in a network of strong nonlinear
interactions”, but also characterized by the emergence of self-
organized structures (velocity vortices and density clusters). In-
terestingly, the authors underline the central role of instabilities
and of transport coefficients in the self-organizing mechanism.
A zeta urn model following a quench from high temperature
to a final state with temperature below the condensation one
is studied in paper [23]. This is an example of an aging sys-
tem displaying scaling behaviour. In this case an equilibrium
state exists, but the relaxation process is so slow that the sys-
tem evolves without reaching it in a finite time. This condition
is found in many complex materials, such as ferromagnets or
complex fluids and glasses, and characterizes the response to an
abrupt change, caused by an external perturbation, in the con-
trol parameters. This paper illustrates an interesting aspect of
complexity, which is relative to the dichotomy equilibrium vs.
non-equilibrium. In the investigated model the cooperative dy-
namics determine the separation of degrees of freedom into two
different groups, the fast one and the slow one. The first group is
responsible for the observed quasi-equilibrium features, while
the second one is associated with aging. This separation trigger
the emergence of interesting scaling behaviours in the physical
observables.

Fractional operators as emergent dynamics in complex systems
In papers [24] and [25] the complex behaviour is associated
with the emergence of fractional derivative operators [6]. These
two papers discuss two alternative approaches in the derivation
and interpretation of fractional operators: in [24] the trapping
mechanism is modeled, while, in [25], the heterogeneity of the
system is considered.
In paper [24] the authors study ”the kinetics of subdiffusion-
limited growth and dissolution of nanoprecipitates in disordered
solids on the base of subdiffusion equations with fractional
derivatives” and compare their analytical results with Monte
Carlo stochastic simulations. The emergence of fractional dy-
namics is here related to the formation of self-organizing clus-
ters in the system, which determine the anomalous transport

and diffusion properties of impurities and defects in disordered
solids, which have a complex heterogeneous structure and con-
tain impurities. At variance with ordered crystalline structures,
in disordered media random fluctuations affect transport phe-
nomena, a condition often modeled by means of the distribution
of some parameter (e.g., relaxation and/or diffusivity parame-
ters).
The authors follow a modeling approach based on trapping
mechanisms and, thus, they apply the well-known Continuous
Time Random Walk (CTRW) to derive the fractional equations
describing anomalous sub-diffusion. [7].

In paper [25] the topological complexity is explicitly inves-
tigated by considering the interplay between structure and dy-
namics in semiflexible, hierarchically-built fractal polymers un-
der external pulling forces. A Langevin modeling approach is
here used with the introduction of a random relaxation parame-
ter. Under the assumption of a power-law distribution of the pa-
rameter, related to the topological structure of the polymer, the
authors rigorously prove that the considered dynamical quan-
tities are described through equations involving fractional cal-
culus operators, in agreement with former phenomenological
fractional laws in polymer physics.
This is an interesting example of how a complex structure or
a complex medium can determine the emergence of fractional
calculus and anomalous diffusion. This result is even more in-
teresting as it has been depicted in the framework of a complex
biological system. In recent years, the derivation of fractional
operators in the context of disordered, non-homogeneous me-
dia has attracted some interest (see, e.g., [8, 9]), and paper [25]
surely gives an important contribution in shedding light into the
relationship between complexity and fractional calculus.

Complexity in biological systems
Papers [26, 27, 28, 29, 30, 31] are focused on the investigation
of biological systems. Biology is probably the most intriguing
research field from the point of view of complexity science. In
fact, the first requirement for a biological system to be alive,
and to survive, is the need for some kind of self-organization.
In this sense, a biological system represents the best prototype
of complexity. We note that also paper [25], already introduced
above, could be included in the section dedicated to biological
applications, but we decided to discuss it in the framework of
fractional calculus and complexity due to heterogeneity.
The central role of fractality and self-similarity is discussed in
paper [26], being the study focused on the role of geometri-
cal structures. Clearly, fractality is strictly connected to self-
organization as a fractal object is generated through a coopera-
tive dynamics and the transport over a geometrical fractal is typ-
ically anomalous, displaying power-law and scaling. The au-
thors find the emergence of three-dimensional structures in two-
dimensional monomolecular layers of fatty acids, thus charac-
terizing the self-similarity of the system by means of fractal
dimensions. In these systems many physical properties, such as
the specific capacitance, depend not only on the material, but
also on the fractality of the structures and, thus, on the kind of
nonlinear dynamics among the different components of the sys-
tem, which are given, in this case, by the nucleation dynamics.
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In paper [27] the authors discuss an interesting approach, based
on Random Matrix Theory, to the modeling of the dynamics
of RNA three-dimensional conformational structure. The non-
linear random matrix model is used to simulate the RNA fold-
ing and, in particular, the transitions among different confor-
mational states, giving a good agreement with the analysis of
real data carried out in the paper. Thus, the complexity of the
system is described by means of the topological features of the
system. Even if the modeling approach is different, the under-
lying qualitative idea of this paper is similar to that discussed in
paper [25].
In paper [28] a biophysical phenomenon known as Quorum
Sensing (QS) is studied. QS is a very interesting example of so-
cial collective behaviour in bacteria, being the nonlinear inter-
actions given here by the secretion and detection of some chem-
ical signaling molecules or, as in this paper, of bioluminescence
signals that are generated by bacteria through a chemical reac-
tion. The emergence of self-organizing behaviour is interpreted
as an ecological strategy providing more opportunities for the
group survival. A crucial role is assumed by the statistical dis-
tribution of the inter-event times, being each event given by the
bioluminescent emission. This approach lies into the general
framework of complexity interpreted as fractal intermittency,
also denoted as Temporal Complexity and described in papers
[17] and [31].
The authors of paper [29] investigate the diffusion properties of
a system of active dumbbell molecules with repulsive interac-
tions, which is a prototype of Active Matter. In Active Mat-
ter the particles are self-propelled units that are not passively
advected by the fluid flow. Active Matter is characterized by
a ”continuous partial conversion of internal energy into work”.
As underlined by the same authors, ”these systems live, or func-
tion, in conditions far from thermodynamic equilibrium and
pose challenging questions to non-equilibrium statistical me-
chanics” and ”exhibit non-trivial collective properties”.
The authors of paper [30] illustrate an interesting neural model
that is inspired to the physiological sleep-wake cycle in the
brain. They discuss the constructive role of non-homogeneity
and disorder in complex systems. To this goal, they build a net-
work of Hodgkin-Huxley-type neurons that is inspired to the
real physiology of the brain, even if the heterogeneity is lim-
ited to only two different kind of neurons. This means that their
modeling approach is focused on the microscopic level of the
single neuron dynamics, but it is able to reproduce, by means
of emergence of global self-organizing behaviours, the sleep-
wake cycle. In particular, they show how emergent behaviour
and, in particular, the sleep-wake cycle, is related to the inter-
play between heterogeneous units in the neural network, which
is an example of diversity-induced resonance. It is worth un-
derlining the following sentence of the authors:
“The effect studied can be considered as a most typical example
of global phenomenon emerging from the non-linear interaction
of the units of a complex system, not only because it provides
a physiological model of the complex behavior of a neuronal
process but also because it is based on the presence of a suitable
level of heterogeneity, a common property of complex systems
that by definition can only be realized in systems composed of

many interacting units.”
The last, but not least, contribution of this collection is given
by paper [31]. This is a very nice discussion about a novel
view about the analysis and modeling of complex biological
systems, a hot research field that the author denotes as Bio-
logical Complexity. The proposed view is based on a combi-
nation of ideas coming from critical phenomena, renewal the-
ory and long-term memory stochastic processes (e.g., General-
ized Langevin Equation and Fractional Brownian Motion). The
emergence of self-organization in biological systems is evident,
but there’s the lack of general leading principles, which is a very
old problem of theoretical biophysics with respect to other field
where the theoretical research can refer to guiding principles
(e.g., the postulates of classical mechanics). The author rightly
doubts that this reductionist point of view will never work in the
case of complex systems and, in particular, in theoretical biol-
ogy, as the emergence of self-organization cannot be reduced to
a sum of microscopic, independent, units.

It is true that anomalous diffusion and scaling, as well as
fractional dynamics, superstatistics or Tsallis distribution, can
emerge from a linear superposition of effects generated by a
non-homogeneous medium determining observed random fluc-
tuations in some crucial parameters. However, on one hand, this
approach is not able to explain the emergence of self-organized
structures from strong nonlinear dynamics. On the other hand,
it is based on a heterogeneity of the medium that must be com-
plex itself in order to generate anomalous transport. Thus, in
order to get this complex (fractal) heterogeneity, a previous self-
organizing mechanism has to be assumed, but this again implies
the existence of cooperative, nonlinearly interacting, units.
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