30,039 research outputs found

    The Skyrme Interaction in finite nuclei and nuclear matter

    Get PDF
    Self-consistent mean-field models are a powerful tool in the investigation of nuclear structure and low-energy dynamics. They are based on effective energy-density functionals, often formulated in terms of effective density-dependent nucleon-nucleon interactions. The free parameters of the functional are adjusted to empirical data. A proper choice of these parameters requires a comprehensive set of constraints covering experimental data on finite nuclei, concerning static as well as dynamical properties, empirical characteristics of nuclear matter, and observational information on nucleosynthesis, neutron stars and supernovae. This work aims at a comprehensive survey of the performance of one of the most successful non-relativistic self-consistent method, the Skyrme-Hartree-Fock model (SHF), with respect to these constraints. A full description of the Skyrme functional is given and its relation to other effective interactions is discussed. The validity of the application of SHF far from stability and in dense environments beyond the nuclear saturation density is critically assessed. The use of SHF in models extended beyond the mean field approximation by including some correlations is discussed. Finally, future prospects for further development of SHF towards a more consistent application of the existing and promisingly newly developing constraints are outlined.Comment: 71 pages, 22 figures. Accepted for publication in Prog.Part.Nucl.Phy

    Fusion rules and vortices in px+ipyp_x+ip_y superconductors

    Full text link
    The "half-quantum" vortices (σ\sigma) and quasiparticles (ψ\psi) in a two-dimensional px+ipyp_x+ip_y superconductor obey the Ising-like fusion rules ψ×ψ=1\psi\times \psi=1, σ×ψ=σ\sigma\times \psi=\sigma, and σ×σ=1+ψ\sigma\times \sigma= 1+\psi. We explain how the physical fusion of vortex-antivortex pairs allows us to use these rules to read out the information encoded in the topologically protected space of degenerate ground states. We comment on the potential applicability of this fact to quantum computation. Modified 11/30/05 to reflect manuscript as accepted for publication. Includes corrected last section.Comment: 23 pages, REVTEX

    Finite Nuclei in the Quark-Meson Coupling (QMC) Model

    Get PDF
    We report the first use of the effective QMC energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the non-relativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having clear physical basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist however multiple Skyrme paramater sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, as derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.Comment: 9 pages, 1 table, 4 figures; in print in Phys. Rev. Letters. A minor change in the abstract, a few typos corrected and some small technical adjustments made to comply with the journal regulation

    Instabilities and waves in thin films of living fluids

    Full text link
    We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys Fluids 13 (2001) 1160] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.Comment: 4 pages, pdflatex, accepted for publication in Phys Rev Let

    Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites <i>Trypanosoma brucei rhodesiense</i> or <i>Trypanosoma brucei gambiense</i>, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in the severity of the neuroinflammatory response was detected when the inhibitor was administered in animals exhibiting the more severe, late central nervous system stage, of the infection. <i>In vitro</i> assays showed that Ro-61-8048 had no direct effect on trypanosome proliferation suggesting that the anti-inflammatory action is due to a direct effect of the inhibitor on the host cells and not a secondary response to parasite destruction. These findings demonstrate that kynurenine pathway catabolites are involved in the generation of the more severe inflammatory reaction associated with the late central nervous system stages of the disease and suggest that Ro-61-8048 or a similar drug may prove to be beneficial in preventing or ameliorating the PTRE when administered as an adjunct to conventional trypanocidal chemotherap

    Field Dependent Phase Diagram of the Quantum Spin Chain (CH3)2NH2CuCl3

    Full text link
    Although (CH3)2NH2CuCl3 (MCCL) was first examined in the 1930's [1], there are open questions regarding the magnetic dimensionality and nature of the magnetic properties. MCCL is proposed to be a S=1/2 alternating ferromagnetic antiferromagnetic spin chain alternating along the crystalline a-axis [2,3]. Proposed ferromagnetic (JFM =1.3 meV) and antiferromagnetic (JAFM =1.1 meV) exchange constants make this system particularly interesting for experimental study. Because JFM and JAFM are nearly identical, the system should show competing behavior between S=1/2 (AFM) and S=1(FM) effects. We report low temperature magnetic field dependent susceptibility, chi(H), and specific heat, Cp, of MCCL. These provide an initial magnetic-field versus temperature phase diagram. A zero-field phase transition consistent with long range magnetic order is observed at T=0.9 K. The transition temperature can be reduced via application of a magnetic field. We also present comparisons to a FM/AFM dimer model that accounts for chi(T,H=0) and Cp(H,T).Comment: 2 pages, 1 figure included in text. Submitted to proceedings of 24th International Conference on Low Temperature Physics, August 200

    Water-based peeling of thin hydrophobic films

    Full text link
    Inks of permanent markers and water-proof cosmetics create elastic thin films upon application on a surface. Such adhesive materials are deliberately designed to exhibit water-repellent behavior. Therefore, patterns made up of these inks become resistant to moisture and cannot be cleaned by water after drying. However, we show that sufficiently slow dipping of such elastic films, which are adhered to a substrate, into a bath of pure water allows complete removal of the hydrophobic coatings. Upon dipping, the air-water interface in the bath forms a contact line on the substrate, which exerts a capillary-induced peeling force at the edge of the hydrophobic thin film. We highlight that this capillary peeling process is more effective at lower velocities of the air-liquid interface and lower viscosities. Capillary peeling not only removes such thin films from the substrate but also transfers them flawlessly onto the air-water interface

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas
    corecore