129 research outputs found

    A portrait of Lewis John Stadler 1896-1954

    Get PDF
    G. P. REDEI, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI

    Flower differentiation in arabidopsis

    Get PDF
    There is a consensus among developmental geneticists that few generalizations are possible at the present status of the field, and even the boundaries are difficult to define. Yet in few special cases, consistent facts have been accumulated which point to systems of controls of differentiation.In the facultative long-day plant Arabidopsis, the differentiation of flower primordia is controlled by several gene loci. Recessive mutations may determine in a qualitatively distinct manner the onset of flower development. Continuous illumination in contrast to 8-9 hours daily cycles of light promotes flowering in all genotypes. Mutants at the ld locus are incapable of flowering under short days and entail a critical day-length. Different alleles at the gi locus require several times as long period for flower induction than the wild type under 24 hours light yet under short days they do not differ, very conspicuously from the standard type. Mutants at the co locus are late flowering and recessive under long days but they are more precocious than the wild type under short days and they display dominance. In total darkness, the wild type and all mutants flower early. The aseptic feeding of 5-bromodeoxyuridine highly accelerates flower differentiation in all genotypes under long days and also under short days with the exception of the ld mutants. The analog is incorporated into the DNA of all types. Bromodeoxyuridine-grown plants accumulate higher amounts of radioactivity, provided by 14[subscript C]-amino acids, into a chromatin fraction. The experimental observations support the view that flowering in this plant is under negative control and bromodeoxyuridineis hampering the synthesis of a postulated suppressor.G. P. REDEI, GREGORIA ACEDO AND G. GAVAZZI, University of Missouri, Columbia, Mo

    Extended Representations of Observables and States for a Noncontextual Reinterpretation of QM

    Full text link
    A crucial and problematical feature of quantum mechanics (QM) is nonobjectivity of properties. The ESR model restores objectivity reinterpreting quantum probabilities as conditional on detection and embodying the mathematical formalism of QM into a broader noncontextual (hence local) framework. We propose here an improved presentation of the ESR model containing a more complete mathematical representation of the basic entities of the model. We also extend the model to mixtures showing that the mathematical representations of proper mixtures does not coincide with the mathematical representation of mixtures provided by QM, while the representation of improper mixtures does. This feature of the ESR model entails that some interpretative problems raising in QM when dealing with mixtures are avoided. From an empirical point of view the predictions of the ESR model depend on some parameters which may be such that they are very close to the predictions of QM in most cases. But the nonstandard representation of proper mixtures allows us to propose the scheme of an experiment that could check whether the predictions of QM or the predictions of the ESR model are correct.Comment: 17 pages, standard latex. Extensively revised versio

    Algebras of Measurements: the logical structure of Quantum Mechanics

    Full text link
    In Quantum Physics, a measurement is represented by a projection on some closed subspace of a Hilbert space. We study algebras of operators that abstract from the algebra of projections on closed subspaces of a Hilbert space. The properties of such operators are justified on epistemological grounds. Commutation of measurements is a central topic of interest. Classical logical systems may be viewed as measurement algebras in which all measurements commute. Keywords: Quantum measurements, Measurement algebras, Quantum Logic. PACS: 02.10.-v.Comment: Submitted, 30 page

    Extending structures I: the level of groups

    Full text link
    Let HH be a group and EE a set such that H⊆EH \subseteq E. We shall describe and classify up to an isomorphism of groups that stabilizes HH the set of all group structures that can be defined on EE such that HH is a subgroup of EE. A general product, which we call the unified product, is constructed such that both the crossed product and the bicrossed product of two groups are special cases of it. It is associated to HH and to a system ((S,1S,∗),◃, â–č, f)\bigl((S, 1_S,\ast), \triangleleft, \, \triangleright, \, f \bigl) called a group extending structure and we denote it by H⋉SH \ltimes S. There exists a group structure on EE containing HH as a subgroup if and only if there exists an isomorphism of groups (E,⋅)≅H⋉S(E, \cdot) \cong H \ltimes S, for some group extending structure ((S,1S,∗),◃, â–č, f)\bigl((S, 1_S,\ast), \triangleleft, \, \triangleright, \, f \bigl). All such group structures on EE are classified up to an isomorphism of groups that stabilizes HH by a cohomological type set K⋉2(H,(S,1S)){\mathcal K}^{2}_{\ltimes} (H, (S, 1_S)). A Schreier type theorem is proved and an explicit example is given: it classifies up to an isomorphism that stabilizes HH all groups that contain HH as a subgroup of index 2.Comment: 17 pages; to appear in Algebras and Representation Theor

    Physical propositions and quantum languages

    Full text link
    The word \textit{proposition} is used in physics with different meanings, which must be distinguished to avoid interpretational problems. We construct two languages L∗(x)\mathcal{L}^{\ast}(x) and L(x)\mathcal{L}(x) with classical set-theoretical semantics which allow us to illustrate those meanings and to show that the non-Boolean lattice of propositions of quantum logic (QL) can be obtained by selecting a subset of \textit{p-testable} propositions within the Boolean lattice of all propositions associated with sentences of L(x)\mathcal{L}(x). Yet, the aforesaid semantics is incompatible with the standard interpretation of quantum mechanics (QM) because of known no-go theorems. But if one accepts our criticism of these theorems and the ensuing SR (semantic realism) interpretation of QM, the incompatibility disappears, and the classical and quantum notions of truth can coexist, since they refer to different metalinguistic concepts (\textit{truth} and \textit{verifiability according to QM}, respectively). Moreover one can construct a quantum language LTQ(x)\mathcal{L}_{TQ}(x) whose Lindenbaum-Tarski algebra is isomorphic to QL, the sentences of which state (testable) properties of individual samples of physical systems, while standard QL does not bear this interpretation.Comment: 15 pages, no figure, standard Late

    Causal categories: relativistically interacting processes

    Full text link
    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.Comment: 43 pages, lots of figure

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416
    • 

    corecore