2,212 research outputs found
Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003
The unusual radio burst of May 29, 2003 connected with the M1.5 flare in AR
10368 has been analyzed. It was observed by the Solar Broadband Radio
Spectrometer (SBRS/Huairou station, Beijing) in the 5.2-7.6 GHz range. It
proved to be only the third case of a neat zebra structure appearing among all
observations at such high frequencies. Despite the short duration of the burst
(25 s), it provided a wealth of data for studying the superfine structure with
millisecond resolution (5 ms). We localize the site of emission sources in the
flare region, estimate plasma parameters in the generation sites, and suggest
applicable mechanisms for interpretating spikes and zebra-structure generation.
Positions of radio bursts were obtained by the Siberian Solar Radio Telescope
(SSRT) (5.7 GHz) and Nobeyama radioheliograph (NoRH) (17 GHz). The sources in
intensity gravitated to tops of short loops at 17 GHz, and to long loops at 5.7
GHz. Short pulses at 17 GHz (with a temporal resolution of 100 ms) are
registered in the R-polarized source over the N-magnetic polarity
(extraordinary mode). Dynamic spectra show that all the emission comprised
millisecond pulses (spikes) of 5-10 ms duration in the instantaneous band of 70
to 100 MHz, forming the superfine structure of different bursts, essentially in
the form of fast or slow-drift fibers and various zebra-structure stripes. Five
scales of zebra structures have been singled out. As the main mechanism for
generating spikes (as the initial emission) we suggest the coalescence of
plasma waves with whistlers in the pulse regime of interaction between
whistlers and ion-sound waves. In this case one can explain the appearance of
fibers and sporadic zebra-structure stripes exhibiting the frequency splitting.Comment: 11 pages, 5 figures, in press; A&A 201
Log-periodic drift oscillations in self-similar billiards
We study a particle moving at unit speed in a self-similar Lorentz billiard
channel; the latter consists of an infinite sequence of cells which are
identical in shape but growing exponentially in size, from left to right. We
present numerical computation of the drift term in this system and establish
the logarithmic periodicity of the corrections to the average drift
Persistence effects in deterministic diffusion
In systems which exhibit deterministic diffusion, the gross parameter
dependence of the diffusion coefficient can often be understood in terms of
random walk models. Provided the decay of correlations is fast enough, one can
ignore memory effects and approximate the diffusion coefficient according to
dimensional arguments. By successively including the effects of one and two
steps of memory on this approximation, we examine the effects of
``persistence'' on the diffusion coefficients of extended two-dimensional
billiard tables and show how to properly account for these effects, using walks
in which a particle undergoes jumps in different directions with probabilities
that depend on where they came from.Comment: 7 pages, 7 figure
Billiards with polynomial mixing rates
While many dynamical systems of mechanical origin, in particular billiards,
are strongly chaotic -- enjoy exponential mixing, the rates of mixing in many
other models are slow (algebraic, or polynomial). The dynamics in the latter
are intermittent between regular and chaotic, which makes them particularly
interesting in physical studies. However, mathematical methods for the analysis
of systems with slow mixing rates were developed just recently and are still
difficult to apply to realistic models. Here we reduce those methods to a
practical scheme that allows us to obtain a nearly optimal bound on mixing
rates. We demonstrate how the method works by applying it to several classes of
chaotic billiards with slow mixing as well as discuss a few examples where the
method, in its present form, fails.Comment: 39pages, 11 figue
Circularly polarized modes in magnetized spin plasmas
The influence of the intrinsic spin of electrons on the propagation of
circularly polarized waves in a magnetized plasma is considered. New eigenmodes
are identified, one of which propagates below the electron cyclotron frequency,
one above the spin-precession frequency, and another close to the
spin-precession frequency.\ The latter corresponds to the spin modes in
ferromagnets under certain conditions. In the nonrelativistic motion of
electrons, the spin effects become noticeable even when the external magnetic
field is below the quantum critical\ magnetic field strength, i.e.,
and the electron density
satisfies m. The importance of electron
spin (paramagnetic) resonance (ESR) for plasma diagnostics is discussed.Comment: 10 page
Rotating Leaks in the Stadium Billiard
The open stadium billiard has a survival probability, , that depends on
the rate of escape of particles through the leak. It is known that the decay of
is exponential early in time while for long times the decay follows a
power law. In this work we investigate an open stadium billiard in which the
leak is free to rotate around the boundary of the stadium at a constant
velocity, . It is found that is very sensitive to . For
certain values is purely exponential while for other values the
power law behaviour at long times persists. We identify three ranges of
values corresponding to three different responses of . It is
shown that these variations in are due to the interaction of the moving
leak with Marginally Unstable Periodic Orbits (MUPOs)
- …