3,268 research outputs found

    Dynamic instability in resonant tunneling

    Full text link
    We show that an instability may be present in resonant tunneling through a quantum well in one, two and three dimensions, when the resonance lies near the emitter Fermi level. A simple semiclassical model which simulates the resonance and the projected density of states by a nonlinear conductor, the Coulomb barrier by a capacitance, and the time evolution by an iterated map, is used. The model reproduces the observed hysteresis in such devices, and exhibits a series of bifurcations leading to fast chaotic current fluctuations.Comment: 7 pages, 2 figure

    The Unusual Super-Luminous Supernovae SN 2011kl and ASASSN-15lh

    Get PDF
    Two recently discovered very luminous supernovae (SNe) present stimulating cases to explore the extents of the available theoretical models. SN 2011kl represents the first detection of a supernova explosion associated with an ultra-long duration gamma ray burst. ASASSN-15lh was even claimed as the most luminous SN ever discovered, challenging the scenarios so far proposed for stellar explosions. Here we use our radiation hydrodynamics code in order to simulate magnetar powered SNe. To avoid explicitly assuming neutron star properties we adopt the magnetar luminosity and spin-down timescale as free parameters of the model. We find that the light curve (LC) of SN 2011kl is consistent with a magnetar power source, as previously proposed, but we note that some amount of 56^Ni (> 0.08 M_sun) is necessary to explain the low contrast between the LC peak and tail. For the case of ASASSN-15lh we find physically plausible magnetar parameters that reproduce the overall shape of the LC provided the progenitor mass is relatively large (a mass of the ejecta approx 6 M_sun). The ejecta hydrodynamics of this event is dominated by the magnetar input, while the effect is more moderate for SN 2011kl. We conclude that a magnetar model may be used for the interpretation of these events and that the hydrodynamic modeling is necessary to derive the properties of powerful magnetars and their progenitors.Comment: Accepted by Astrophysical Journal Letters, 5 pages, 5 figure

    Leptonic secondary emission in a hadronic microquasar model

    Get PDF
    Context: It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that include the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims: We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods: The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. We also compute the spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. The spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results: We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.Comment: 8 pages, 5 figures. Accepted for publication in Astronomy & Astrophysic

    The Canada-France High-z Quasar Survey: 1.2mm Observations

    Full text link
    We report 250 GHz (1.2 mm) observations of a sample of 20 QSOs at redshifts 5.8<z<6.5 from the the Canada-France High-z Quasar Survey (CFHQS), using the Max-Planck Millimeter Bolometer (MAMBO) array at the IRAM 30-metre telescope. A rms sensitivity <~ 0.6 mJy was achieved for 65% of the sample, and <~ 1.0 mJy for 90%. Only one QSO, CFHQS J142952+544717, was robustly detected with S_250GHz = 3.46 +/-0.52 mJy. This indicates that one of the most powerful known starbursts at z~6 is associated with this radio loud QSO. On average, the other CFHQS QSOs, which have a mean optical magnitude fainter than previously studied SDSS samples of z~6 QSOs, have a mean 1.2 mm flux density = 0.41 +/-0.14 mJy; such a 2.9-sigma average detection is hardly meaningful. It would correspond to ~ 0.94+/-0.32 10^12 Lo, and an average star formation rate of a few 100's Mo/yr, depending on the IMF and a possible AGN contribution to . This is consistent with previous findings of Wang et al. (2011) on the far-infrared emission of z~6 QSOs and extends them toward optically fainter sources.Comment: 6 pages, 1 figure, A&A in pres
    corecore