716 research outputs found

    Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic insulator Cu2_2OSeO3_3

    Full text link
    We report on the observation of magnon thermal conductivity κm\kappa_m\sim 70 W/mK near 5 K in the helimagnetic insulator Cu2_2OSeO3_3, exceeding that measured in any other ferromagnet by almost two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for the least defective specimens in the range 2 K <T<<T< 10 K. These observations establish Cu2_2OSeO3_3 as a model system for studying long-wavelength magnon dynamics.Comment: 10pp, 9 figures, accepted PRB (Editor's Suggestion

    The XMM-Newton wide-field survey in the COSMOS field. IV: X-ray spectral properties of Active Galactic Nuclei

    Get PDF
    We present a detailed spectral analysis of point-like X-ray sources in the XMM-COSMOS field. Our sample of 135 sources only includes those that have more than 100 net counts in the 0.3-10 keV energy band and have been identified through optical spectroscopy. The majority of the sources are well described by a simple power-law model with either no absorption (76%) or a significant intrinsic, absorbing column (20%).As expected, the distribution of intrinsic absorbing column densities is markedly different between AGN with or without broad optical emission lines. We find within our sample four Type-2 QSOs candidates (L_X > 10^44 erg/s, N_H > 10^22 cm^-2), with a spectral energy distribution well reproduced by a composite Seyfert-2 spectrum, that demonstrates the strength of the wide field XMM/COSMOS survey to detect these rare and underrepresented sources.Comment: 16 pages, ApJS COSMOS Special Issue, 2007 in press. The full-resolution version is available at http://www.mpe.mpg.de/XMMCosmos/PAPERS/mainieri_cosmos.ps.g

    GABRB3 mutations: a new and emerging cause of early infantile epileptic encephalopathy

    Get PDF
    The gamma-aminobutyric acid type A receptor β3 gene (GABRB3) encodes the β3-subunit of the gamma-aminobutyric acid type A (GABAA ) receptor, which mediates inhibitory signalling within the central nervous system. Recently, GABRB3 mutations have been identified in a few patients with infantile spasms and Lennox-Gastaut syndrome. We report the clinical and electrographic features of a novel case of GABRB3-related early-onset epileptic encephalopathy. Our patient presented with neonatal hypotonia and feeding difficulties, then developed pharmacoresistant epileptic encephalopathy, characterized by multiple seizure types from 3 months of age. Electroencephalography demonstrated ictal generalized and interictal multifocal epileptiform abnormalities. Using a SureSelectXT custom multiple gene panel covering 48 early infantile epileptic encephalopathy/developmental delay genes, a novel de novo GABRB3 heterozygous missense mutation, c.860C>T (p.Thr287Ile), was identified and confirmed on Sanger sequencing. GABRB3 is an emerging cause of early-onset epilepsy. Novel genetic technologies, such as whole-exome/genome sequencing and multiple gene panels, will undoubtedly identify further cases, allowing more detailed electroclinical delineation of the GABRB3-related genotypic and phenotypic spectra

    Observational Constraints on the Dependence of Radio-Quiet Quasar X-ray Emission on Black Hole Mass and Accretion Rate

    Full text link
    In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, alpha_ox, and the X-ray photon index, Gamma_X, on black hole mass, UV luminosity relative to Eddington, and X-ray luminosity relative to Eddington. Our sample is drawn from the SDSS, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of Gamma_X from Chandra. We estimate M_BH using standard estimates derived from the Hbeta, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass (10^6 < M_BH / M_Sun < 10^10) and redshift (z < 4.8). We find that alpha_ox increases with increasing M_BH and L_UV / L_Edd, and decreases with increasing L_X / L_Edd. In addition, we confirm the correlation seen in previous studies between Gamma_X and M_BH and both L_UV / L_Edd and L_X / L_Edd; however, we also find evidence that the dependence of Gamma_X of these quantities is not monotonic, changing sign at M_BH ~ 3 x 10^8 M_Sun. We argue that the alpha_ox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to Eddington. In addition, we argue that the Gamma_X trends are caused by a dependence of X-ray spectral index on accretion rate. We discuss our results within the context of accretion models with comptonizing corona, and discuss the implications of the alpha_ox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad line mass estimates.Comment: Accepted by ApJ, 23 pages, 15 figures, emulateapj styl

    AGN X-ray variability in the XMM-COSMOS survey

    Get PDF
    We took advantage of the observations carried out by XMM in the COSMOS field during 3.5 years, to study the long term variability of a large sample of AGN (638 sources), in a wide range of redshift (0.1<z<3.5) and X-ray luminosity (1041<10^{41}<L(2-10)<1045.5<10^{45.5}). Both a simple statistical method to asses the significance of variability, and the Normalized Excess Variance (σrms2\sigma^{2}_{rms}) parameter, where used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGN, whenever we have good statistic to measure it, and no significant differences between type-1 and type-2 AGN were found. A flat (slope -0.23+/-0.03) anti-correlation between σrms2\sigma^{2}_{rms} and X-ray luminosity is found, when significantly variable sources are considered all together. When divided in three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGN being more variable. We prove however that this effect is due to the pre-selection of variable sources: considering all the sources with available σrms2\sigma^{2}_{rms} measurement, the evolution in redshift disappears. For the first time we were also able to study the long term X-ray variability as a function of MBHM_{\rm BH} and Eddington ratio, for a large sample of AGN spanning a wide range of redshift. An anti-correlation between σrms2\sigma^{2}_{rms} and MBHM_{\rm BH} is found, with the same slope of the anti-correlation between σrms2\sigma^{2}_{rms} and X-ray luminosity, suggesting that the latter can be a byproduct of the former one. No clear correlation is found between σrms2\sigma^{2}_{rms} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σrms2\sigma^{2}_{rms} and the optical variability.Comment: 14 Pages, 13 figures. Accepted to the Astrophysical Journal on December 6, 201

    Linking black-hole growth with host galaxies: The accretion-stellar mass relation and its cosmic evolution

    Full text link
    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (MM_\star). To investigate this SMBH growth-MM_\star relation in detail, we calculate long-term SMBH accretion rate as a function of MM_\star and redshift [BHAR(M,z)\overline{\rm BHAR}(M_\star, z)] over ranges of log(M/M)=9.5–12\log(M_\star/M_\odot)=\text{9.5--12} and z=0.4–4z=\text{0.4--4}. Our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) is constrained by high-quality survey data (GOODS-South, GOODS-North, and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given MM_\star, BHAR\overline{\rm BHAR} is higher at high redshift. This redshift dependence is stronger in more massive systems (for log(M/M)11.5\log(M_\star/M_\odot)\approx 11.5, BHAR\overline{\rm BHAR} is three decades higher at z=4z=4 than at z=0.5z=0.5), possibly due to AGN feedback. Our results indicate that the ratio between BHAR\overline{\rm BHAR} and average star formation rate (SFR\overline{\rm SFR}) rises toward high MM_\star at a given redshift. This BHAR/SFR\overline{\rm BHAR}/\overline{\rm SFR} dependence on MM_\star does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)M_{\rm BH}(z)] based on our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) and the M(z)M_\star(z) from the literature, and find that the MBHM_{\rm BH}-MM_\star relation has weak redshift evolution since z2z\approx 2. The MBH/MM_{\rm BH}/M_\star ratio is higher toward massive galaxies: it rises from 1/5000\approx 1/5000 at logM10.5\log M_\star\lesssim 10.5 to 1/500\approx 1/500 at logM11.2\log M_\star \gtrsim 11.2. Our predicted MBH/MM_{\rm BH}/M_\star ratio at high MM_\star is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.Comment: 27 pages, 21 figures, 2 tables; MNRAS accepte

    The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

    Get PDF
    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the "classic locus" of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosity >10^42 erg/s. We present the linear fit between the total i band magnitude and the X-ray flux in the soft and hard band, drawn over 2 orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between C and X/O, computed in the hard band, and that 90% of the obscured AGN in the sample with morphological information live in galaxies with regular morphology (bulgy and disky/spiral), suggesting that secular processes govern a significant fraction of the BH growth at X-ray luminosities of 10^43- 10^44.5 erg/s.Comment: 21 pages, 17 figures, 4 tables; accepted for publication in ApJS. The catalog is available at the urls listed in the pape
    corecore