2,264 research outputs found
From the self-force problem to the Radiation reaction formula
We review a recent theoretical progress in the so-called self-force problem
of a general relativistic two-body system. Although a two-body system in
Newtonian gravity is a very simple problem, some fundamental issues are
involved in relativistic gravity. Besides, because of recent projects for
gravitational wave detection, it comes to be possible to see those phenomena
directly via gravitational waves, and the self-force problem becomes one of
urgent and highly-motivated problems in general relativity. Roughly speaking,
there are two approaches to investigate this problem; the so-called
post-Newtonian approximation, and a black hole perturbation.
In this paper, we review a theoretical progress in the self-force problem
using a black hole perturbation. Although the self-force problem seems to be
just a problem to calculate a self-force, we discuss that the real problem is
to define a gauge invariant concept of a motion in a gauge dependent metric
perturbation.Comment: a special issue for Classical and Quantum Gravity, a review article
of Capra Ranch Meeting
Exploiting low-cost 3D imagery for the purposes of detecting and analyzing pavement distresses
Road pavement conditions have significant impacts on safety, travel times, costs, and environmental effects. It is the responsibility of road agencies to ensure these conditions are kept in an acceptable state. To this end, agencies are tasked with implementing pavement management systems (PMSs) which effectively allocate resources towards maintenance and rehabilitation. These systems, however, require accurate data. Currently, most agencies rely on manual distress surveys and as a result, there is significant research into quick and low-cost pavement distress identification methods. Recent proposals have included the use of structure-from-motion techniques based on datasets from unmanned aerial vehicles (UAVs) and cameras, producing accurate 3D models and associated point clouds. The challenge with these datasets is then identifying and describing distresses. This paper focuses on utilizing images of pavement distresses in the city of Palermo, Italy produced by mobile phone cameras. The work aims at assessing the accuracy of using mobile phones for these surveys and also identifying strategies to segment generated 3D imagery by considering the use of algorithms for 3D Image segmentation to detect shapes from point clouds to enable measurement of physical parameters and severity assessment. Case studies are considered for pavement distresses defined by the measurement of the area affected such as different types of cracking and depressions. The use of mobile phones and the identification of these patterns on the 3D models provide further steps towards low-cost data acquisition and analysis for a PMS
Predicting tire/pavement noise impact reduction using numerical simulation and experimental data for open graded asphalt mixture
The environmental impact of noise from roads and highways traffic is relevant in urban and rural areas. The use of open-graded asphalt pavements reduces significantly the noise, entrapping the acoustic waves inside the porous structure of the material. In this paper we propose a simulation approach in order to predict the acoustic properties of the asphalt mixture from geometrical and topological indicators. In detail we have generated, using a Random Sequential Adsorption model, synthetic samples starting from the same grading and bitumen contents of real samples manufactured in laboratory. We have measured the acoustic adsorption coefficient of the real samples and we have investigated the correlation between this coefficient and some numerical indicators extracted from the simulated samples. Dimension and content of voids seem to be the most significant indicators for predicting acoustic properties of HMA. These correlations, that seem to be very promising, are useful in order to optimize the design of HMA in the perspective of minimizing noise impact
A dissipated energy comparison to evaluate fatigue resistance using 2PB
Flexural fatigue due to repeated traffic loading is a process of cumulative damage and one of the main failure modes of flexible pavement structures. Typically, micro-cracks originate at the bottom of an asphalt concrete layer due to horizontal tensile strains. Micro-cracking starts to propagate towards the upper layers under repeated loading which can lead to pavement failure.
Different approaches are usually used to characterise fatigue resistance in asphalt mixtures including the phenomenological approach, the fracture mechanics approach and the dissipated energy approach. This paper presents a comparison of fatigue resistance calculated for different dissipated energy models using 2 Point Bending (2PB) at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect)
- …