Molecules and heterostructures at TiO₂ surface: the cases of H₂O, CO₂, and organic and inorganic sensitizers

Lorenzo Mino, Federico Cesano, Domenica Scarano, Giuseppe Spoto, Gianmario Martra

Abstract

 TiO_2 -based (nano)materials are widely exploited in systems and devices of actual technological interest, because of their outstanding physical and chemical properties, including chemical stability, long durability, non-toxicity abundance and low cost. For this, they are considered ideal for many practical applications including energy-related devices, photocatalysis, but are known to have some limitations. To improve their performance and then to find more efficient materials in the energy and environmental remediation fields, at first the investigation of the surface/interface properties at the molecular scale is required. In this contribution, a critical review of advances in the field of the TiO₂ surface chemistry, highlighting the role of interactions at the molecular level, grafting and assembling/fabrication of suitable heterostructures, is reported. A few case studies, from the H₂O, CO₂ and acetylene interactions until to the grafting of organic/inorganic systems (graphene, MoS₂) at the TiO₂ surface, are highlighted. The discussed case studies are argued from their principles to the technological relevance.

Keywords

TiO₂ photocatalysis H₂O, CO₂ and C₂H₂ adsorption Graphene and MoS₂/TiO₂ hybrids Surface heterostructures IR spectroscopy STM and AFM HR-TEM Electronic spectroscopy Quantum modelling

Preliminary remarks: motivation and structure of this review

Particles and nanoparticles resulting from the combination of titanium, the second transition element more common in Earth's crust after iron, with oxygen to form TiO₂, mainly in the anatase and rutile phases, are used in a wide array of products, devices and technologies. As reported by the Titanium Dioxide Manufacturers Associations (TDMA, https://tdma.info), gathering since 1974 the major producers of this material in Europe, the commercial and research area representing the "first coordination sphere" of the authors of this review, application for TiO₂ across the EU, as well as across the globe, include paints, papers, pharmaceuticals, sunscreen and food (where it is listed as colourant E171). As a photocatalyst, titanium dioxide can be added to paints, cements, windows and tiles in order to decompose environmental pollutants, and as a white pigment (in this case called titanium white, Pigment White 6 or CI 77891), TiO₂ is one of the most important raw materials for paints and coatings. Moreover, the range of innovative uses for TiO₂ keeps on increasing. In recent years, for example, it has been used in the manufacture of cheap and efficient solar cells and building facades that can neutralize air pollution.

In almost all these applications, the performances of these particles and nanoparticles are ruled, in a large extent, by their surface properties, or, more precisely, by the interaction of their surface with molecules and/or heterostructures. On the basis of our expertise, here we propose a mini-review on four topics where we were able to contribute in the last years, namely TiO_2 nanoparticles in interaction with water, CO_2 , organic and inorganic heterostructures intended as sensitizers towards the response to visible light. Thus, the first section is a summary of the technological relevance of these topics, followed by sections devoted to scientific insights on each of the four surface/interfacial interactions considered. A particular attention has been devoted to results provided by IR spectroscopy in controlled conditions, of course augmented by other relevant methods as tip-based microscopies (STM, AFM), high-resolution transmission electron microscopy, electronic spectroscopy and quantum modelling.

Introduction: technological relevance of the TiO₂-based systems considered

Water at anatase TiO₂ surfaces

The interaction of H₂O molecules with anatase TiO₂ surface is a cornerstone of the technological exploitation of this semiconductor oxide, since Fujishima and Honda discovered the possibility to attain the electrochemical photolysis of water on a TiO₂-based electrode [1]. Up today, the research on this fundamental topic for the sustainable energy production flourished, and a variety of factors with a possible beneficial impact on the effectiveness of this process have been investigated. As far as the tuning of photoactive materials is concerned, the surface functionalization with metals, and in particular noble metals like Au and Pt, is widely recognized as an effective strategy to promote water splitting, even under solar light irradiation [2]. In some case, the functionalization with Pt particles was coupled with a pre-modification of the TiO₂ support, like titania thin films treated with HF solution, which in their bare form were found to exhibit a remarkable enhancement of the photocatalytic activity for H₂ evolution from a methanol aqueous solution, as compared with the untreated TiO_2 [3]. Moreover, the results obtained by XPS and XRD measurements of Pt-loaded TiO₂ as a function of the calcination temperature clearly indicate that controlling the oxidation state of Pt as well as the amount of loaded Pt species are both important factors in the design of water-splitting photocatalysts having high efficiency and stoichiometry [4].

Also mixed oxides were found to act as noble-metal-free alternative to the previous systems, with significant improvements in hydrogen production with respect to bare titania, for instance using TiO_2 –ZnO [5] and TiO_2 –SiO₂ [6] photocatalysts. Also, for these materials the tuning of the preparation conditions has an important impact on their performances. For instance, it was shown that TiO_2 –SiO₂ systems prepared with acetic acid as a chelating agent in a solgel with relatively high specific surface area and high photocurrent density were found to

have low charge-transfer resistance, as well as a wide space charge region, which might result in the superior photocatalytic water decomposition for H_2 production [7].

The other pillar of the chemical exploitation of molecular events occurring in aqueous media at the surface of photostimulated TiO_2 materials is the processes intended to the improvement of the quality of water. The targets are the abatement of both chemical pollutants, like dyes [8, 9], haloderivatives [10, 11], aromatics [12] and biological pollutants, like pathogenic micro-organisms [13].

An important different output of interfacial water $-\text{TiO}_2$ events is the arising of superhydrophilicity of TiO₂ thin films by exposure to UV light [<u>14</u>]. Since the first findings [<u>15</u>], this phenomenon was recognized to have a relevant technological impact for the fabrication of photofunctional materials for self-cleaning, antifogging, antibacterial and stain-proofing agents ([<u>16</u>, <u>17</u>] and references therein). Most part of the subsequent applicative efforts has been focused on the induction of such photoinduced superhydrophilicity under visible light irradiation [<u>14</u>].

Carbon dioxide at anatase TiO2 surfaces

The interaction and photoreactivity of CO₂ with TiO₂ have been the topic of several studies, both experimental and computational, in the last years. There is a twofold motivation in this kind of investigations: (1) CO₂ is one of the main final products in the photocatalytic degradation of organic pollutants [18]; (2) photocatalytic conversion of CO_2 to solar fuels using TiO₂ [19]. The latter point is becoming particularly relevant owing to the increasing concern for the high level of anthropogenic CO₂ emissions and their consequences on the global warming and climate change. In this context, CO₂ valorization by photocatalytic conversion to valuable chemicals could be a promising way to reduce its concentration in the atmosphere [20]. Since CO_2 , being the most oxidized state of carbon, is a very stable molecule, its one-electron reduction is extremely endergonic (-1.9 V vs. SHE) [21] and therefore unsuitable for practical applications. However, protoncoupled multi-electron reduction processes of CO₂ are less thermodynamically demanding and, thus, appear more promising. Transition-metal complexes show excellent photocatalytic activity in this kind of reactions, but are often based on expensive elements (e.g. Ru, Os, Re) [22]. Conversely, photocatalytic systems based on semiconductor nanoparticles (e.g. TiO₂, ZnO, CdS, WO₃, ZrO₂, ZnS) [21] could represent a cheaper alternative. In particular, TiO₂-based systems are attracting increasing interest [19] and a deeper understanding at the molecular level of the processes occurring when CO₂ is interacting with the most common TiO₂ crystalline phases (i.e. anatase and rutile) could help the development of photocatalysts with improved performance.

Heterostructures at TiO2 surface as organic and inorganic sensitizers

In recent years, many efforts have been devoted to exploring suitable materials for environmental and inexpensive applications, including the developing of clean energy processes (i.e. energy conversion) and energy storage technologies (i.e. batteries and capacitors) [23].

In particular, among the photoactive materials, considerable efforts were mostly dedicated to exploring surface chemistry of TiO_2 polytypes, [24, 25, 26, 27, 28, 29, 30, 31], including surface functionalization and grafting of heterostructures, by adopting commonly a multi-technique approach, which helps to correlate morphology and structure with the peculiar properties of the obtained materials [32, 33, 34, 35, 36]. Specifically concerning TiO_2 , we mention those strategies aiming (1) to extend the TiO_2 light absorption threshold from the UV to the Vis–NIR region and (2) to prolong the life of the excitons created under irradiation by retarding the electron/hole recombination.

As to strategy (1) doping with metal [37, 38, 39, 40] and non-metals [41, 42, 43] has been attempted, as well as surface modification by anchoring dye molecules [44, 45, 46], quantum dots [36, 47], metal nanoparticles [36, 47, 48, 49, 50] or also halides species [29].

Among the many contributions, a case study of anatase TiO_2 surface functionalization was provided by Yang et al. [29]. The authors showed that, when anatase TiO_2 crystals, which are mostly dominated by the thermodynamically stable {101} facets (> 94%), rather than the much reactive {001} ones, react with hydrofluoric acid, the faces relative stability is reversed. In fact, F-terminated TiO_2 surfaces exhibit a prevalence (47%) of {001} most reactive faces, being HF a morphology controlling agent. Conversely, about 98.7% of {101} facets can be reached with other developed procedures based on HF/alcohol mixtures [51].

As to strategy (2), great interest has received the preparation of organic/inorganic hybrid materials where TiO_2 is deposited onto or covered with CN (carbon nitride) films [52, 53], "common" carbonaceous structures like amorphous or graphitic carbon [54, 55, 56], or more "exotic" carbon allotropes like fullerenes, CNTs (carbon nanotubes) and above all graphene [57, 58, 59, 60, 61] together with graphene-like materials [23].

The improved photocatalytic activity usually observed for the hybrid materials with respect to the pure oxide is mainly due to the high affinity of the above carbon-based phases for negative charges which allows them to sink across the interface the e- promoted in the TiO_2 valence band under irradiation. This can open new more favourable channels in the dispatching of the catalytic activity, as well as hindering a detrimental fast e-/h+ (electron/hole) recombination [62].

As for the investigation of TiO_2 covered by carbonaceous structures, a section of this review will be devoted to the discussion of the acetylene/TiO₂ interaction, being considered the basis of a complex, but versatile, surface chemistry which can be addressed to the growth under mild conditions (like low temperature and low C_2H_2 pressure) and directly on the TiO₂ surface of a variety of meaningful products. These range from benzene and other small aromatic molecules, to strongly adsorbed coloured oligomeric chains (i.e. possible candidates as dyes for the

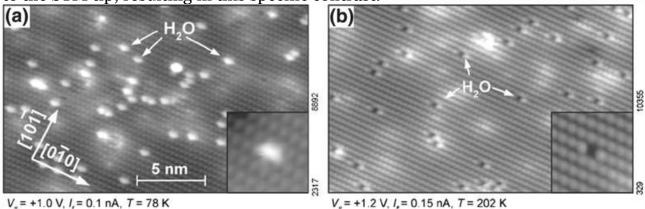
absorption of the Vis-NIR frequencies) up to graphene-like patches, or even continuous graphene layers, uniformly covering the oxide surface (i.e. organic surface structures, possibly acting as stabilizers of the TiO₂ photocharges).

As part of the more general grafting of heterostructures at the surface of TiO₂ polytypes, 2D layered materials such as MoS₂ and other group 6 transitionmetal dichalcogenides (TMDs) are known to be also effective photosensitizers to TiO₂ surface, thus highlighting their potential in photoelectrochemical applications [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. Due to the strong anisotropy of the TMDs structures, individual monolayers *via* cleavage along the weakly bonded van der Waals planes can be isolated, which gives rise to unique properties with respect to their 3D counterpart [63, 76, 77, 78, 79]. Among TMDs, MoS₂, owing to its absorption in the UV–visible range, has attracted increasing interest as a promising material, also for its abundance, low cost, high activity, chemical stability, ability to modify the band gap from an indirect semiconductor (1.3 eV) to a direct semiconductor (1.9 eV), moving from the bulk to ultrathin and nanosized structures [23]. We can underline, for instance, its high charge carrier separation together with considerable migration efficiencies, the wide light harvesting range, when used as anode materials for rechargeable batteries and enhanced solar hydrogen generation [80, 81, 82, 83, 84]. Hence, due to the favourable optical properties of MoS₂, that is, excitonic absorption bands in the visible and the efficient interfacial charge-transfer region between MoS₂- and TiO₂based materials, MoS₂ was considered of great interest to perform MoS_2/TiO_2 hybrid composites, made by TiO₂ sensitized with MoS₂, which causes to increase the visible light absorption ability of TiO₂-based systems [64, 85].

However, coming back briefly to the past, MoS_2 -based TiO₂ materials, obtained from H₂S sulphidation of TiO₂ supported MoO₃, were mainly used as composite coatings for low-friction and wear-resistant properties [<u>86</u>], for catalytic reduction of N₂O with H₂ [<u>87</u>] or for methanol photo-oxidation [<u>88</u>], then in the 1980s for hydrodesulphurization and hydrogenation reactions [<u>89</u>, <u>90</u>]. It was not until the 1990s that the first comprehensive investigations on morphology and structure (i.e. stacking order and defects) of single or few-layered thick MoS₂ grafted on several supports (SiO₂, Al₂O₃, TiO₂ and ZrO₂) were provided by Pratt et al. [<u>91</u>]. Since that, the role played by the MoS₂/support interaction, i.e. interface regions, became relevant also for the discovery of 2D materials (i.e. graphene, other transition-metal dichalcogenides) and their heterostructures.

Along these themes, a section of this review will be devoted to a brief discussion of a few case studies of MoS_2 -based TiO_2 heterostructures, being the reader referred to the extensive literature published elsewhere.

Investigations at molecular level


Water at TiO₂ anatase surfaces

Independently on the type of technological exploitation, all applications involving water/TiO₂ systems gained a fundamental benefit from the knowledge-based

approach targeting the elucidation of what is actually occurring when H₂O molecules interact with TiO₂ surfaces. Among the quite large number of complementary techniques useful for the investigation of the interaction of H₂O molecules with TiO₂ surfaces (e.g. volumetry, microgravimetry, adsorption calorimetry, XPS, HREELS, SFG-VS, IR, tip-based scanning microscopies), it can be of interest to focus on the results provided by two of them. They are scanning tunnelling microscopy (STM), because of its fascinating output consisting in the possibility to "see" molecules on single crystals, and FTIR spectroscopy in controlled atmosphere, for the easiness of application to the study of the results of both dissociative and molecular adsorption of water on TiO₂ nanoparticles, i.e. surface hydroxylation and hydration, respectively.

Water on TiO₂ anatase (101) single crystal: imaging of H_2O molecular adsorption via STM

For TiO₂ anatase, most of these studies have been carried out on (101) single crystals, being this surface the most stable one for this titania phase. STM imaging of adsorbed H₂O molecules was a way to proof that water adsorbs nondissociatively on the anatase (101) surface [92, 93]. Its O atom binds to a fivefoldcoordinated surface Ti atom, while the H atoms form hydrogen bonds with the two neighbouring surface twofold O atoms ([92], also see Fig. 1d). The calculated adsorption energy of H₂O is 730 meV [92] consistent with temperatureprogrammed desorption spectra, which show a broad water desorption peak centred at ~ 250 K [93]. Noteworthy, the appearance of adsorbed molecules depends on experimental conditions, like tip condition [94]. As an example, Fig. 1a and b shows the anatase (101) surface with a small coverage of water. The arrows point out single molecules. As clearly seen in the insets, these appear as either bright, extended features or as three consecutive, bright–dark–bright spots. The molecules' appearance in Fig. 1a is typical for clean, metallic tips; in this case, the appearance does not depend strongly on the sample bias. The contrast in Fig. 1b was frequently encountered for sample temperatures in the range from 180 to 220 K, at conditions where thermal diffusion of water molecules across the surface becomes facile [92]. Possibly, a H₂O molecule (or a fragment thereof) hops to the STM tip, resulting in this specific contrast.

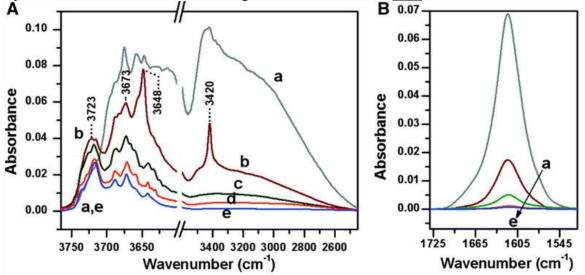


Fig. 1

a, **b**: 20 × 12 nm² STM images of anatase (101) after exposure to 0.01 L H₂O, dosed at $T_{\text{sample}} = 120$ K, scanned at $\mathbf{a}T_{\text{sample}} = 78$ K, $\mathbf{b}T_{\text{sample}} = 202$ K. Adapted from [94]

Dissociative and molecular adsorption of water on TiO₂ nanoparticles: insights from FT mid-IR (MIR) spectroscopy in controlled atmosphere

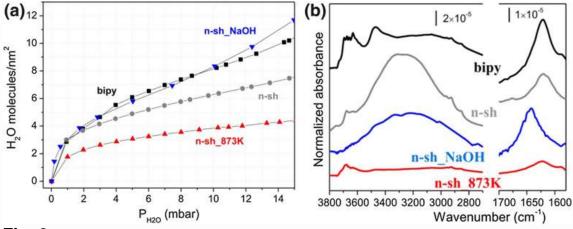
In the case of TiO₂ nanoparticles, terminations of the (101)-type accounts for most part of their surfaces, but higher energy surfaces, like those of the (110) type are exposed, as well us edges and corners, where H₂O molecules are dissociated, forming hydroxy groups, which play an important role as scavenger of photogenerated holes, forming ·OH radicals. As well known, the O-H stretching mode of such species produces a pattern in the 3800-3200 cm⁻¹ range, highly informative on their local structure. The investigation of these features has been the subject of many papers [95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105] that have based on the assignment of various v(OH) bands on the pioneering work of Primet et al. [95] and Tsyganenko et al. [96]. Using these reports, v(OH) bands at frequencies higher than 3680 cm⁻¹ were assigned to linear hydroxy groups, while bands at lower frequencies were related to bridged –OH, the two species resulting from the dissociation of H₂O on pairs of coordinatively unsaturated Ti₄₊ and O²⁻ surface sites. A more comprehensive assignment was proposed by Busca et al. for TiO₂ P25 (now by Evonik, formerly by Degussa) [98], and experimental data and theoretical calculations from Dzwigaj et al. explored the dependence of the v(OH) pattern on the morphology of two types of anatase TiO₂ particles, focusing on regular faces [106]. Furthermore, in those experiments water molecules were present on the surfaces, and most of the observed v(OH) bands were attributed to adsorbed H₂O. Notably, the investigation of structure-reactivity relationships of steps on anatase TiO₂ single crystals has been the subject of a combined experimental and theoretical study [107]. Data reported in [95] can be considered as an example of the possible overall appearance and evolution upon outgassing at increasing temperatures of mid-IR signals due to hydroxy groups and water molecules at the surface of titania nanoparticles, in this case P25. Figure 2 shows the spectra of TiO₂ outgassed up to 773 K in the v(OH) (section A) and $\delta(H_2O)$ (section B) ranges, which exhibited a general trend quite similar to that reported by Mino et al. in his a work on pure nanoanatase [108].

Fig. 2

IR spectra in the v(OH) and $\delta(H_2O)$ regions (sections **A** and **B**, respectively) of TiO₂ P25 outgassed for 60 min at: a beam temperature, i.e. *ca*. 323 K, b 473, c 573,

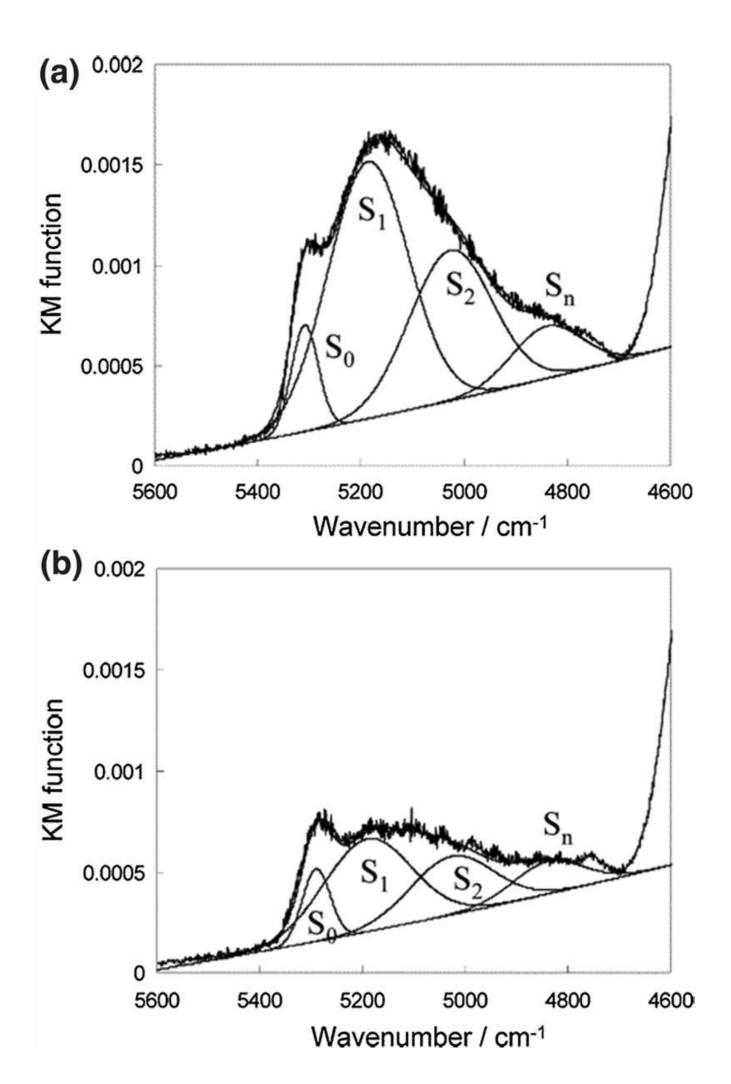
d 673, and e 773 K. On the *X* axis, the scale has been changed at 3600 cm⁻¹, to zoom the region at higher frequency. The gap on the axis is just of 1 cm⁻¹. Reprinted with permission from Ref [109]

After degassing at beam temperature (curve a), the region at high frequencies was dominated by a broad and complex absorption spread over a range from 3600 to 2500 cm⁻¹, due to –OH oscillators involved in H-bonds, and accompanied by a series of narrow and partly resolved peaks/sub-bands in the 3600–3750 cm⁻¹ range, related to –OH groups experiencing weaker intermolecular interactions (Fig. 2a). In experimental studies, bands in the latter range have been mostly assigned to hydroxy groups, whereas undissociated water molecules, coordinatively adsorbed on surface Ti⁴⁺ ions, mainly contributed to the 3600–2500 cm⁻¹ absorption [100], other than produce the δ (H₂O) band at ca. 1620 cm⁻¹ (Fig. 2b). However, more recent theoretical investigations proposed that H₂O adsorbed at high coverage, apparently not involved in H-bonds, should absorb in the 3750–3600 cm⁻¹ range [110]. Nevertheless, the number of components in this range (at least 9, considering maxima and shoulders) indicated the presence of several types of surface sites bearing hydroxyl groups and adsorbed H₂O molecules.


The decrease in integrated intensity of the $\delta(H_2O)$ band after outgassing at 473 K (Fig. 2b) monitored the removal of approximately 75% of the adsorbed H₂O molecules. Water desorption and condensation of hydroxy groups were also responsible for the decrease in intensity of the v(OH) pattern that occurred to a much higher extent for the broad 3600–2500 cm⁻¹ band than for the set of sharp 3750–3600 cm⁻¹ peaks. This latter now exhibits a main peak at 3648 cm⁻¹, asymmetric towards the lower frequency side and with a shoulder at 3655 cm⁻¹. Additionally, another component at 3673 cm⁻¹ with sub-bands at 3690 cm⁻¹, and a new band with a maximum at 3723 cm⁻¹, resulting from the overlap of several components, appeared. This complex signal was assigned to O-H oscillators initially involved in H-bonding (and then absorbing at lower frequencies) with hydroxyl groups/water molecules that were removed by outgassing. Noticeably, a quite narrow band was now observed at 3420 cm⁻¹, still superimposed on a broad absorption. This band was supposed to be characteristic of the rutile phase present in the P25 [102], but was also observed for a pure anatase sample [100]. In this last case, it was assigned to coordinated water species on the basis of the similar evolution in dependence on the outgassing temperature with respect to the $\delta(H_2O)$ band. Conversely, in a more recent paper, this component was supposed to be due to hydroxy groups playing a special role in the photocatalytic behaviour of the P25, but this assignment is questionable, because the $\delta(H_2O)$ spectral range was not reported [105]. In the present case, outgassing at 573 K (Fig. 2a, b, curves c) resulted in the depletion of the 3420 cm⁻¹ band and in a decrease in intensity of the broad feature below, while the $\delta(H_2O)$ band appeared significantly weaker. This behaviour might support the assignment of the 3420 cm⁻¹ signal to water molecules. However, it must be considered that two v(OH) absorptions were expected for H₂O molecules and that a partner signal must be identified. In addition, the location of the considered band was in the range typical for OH oscillators involved in H-bonds, and such interactions usually produce a

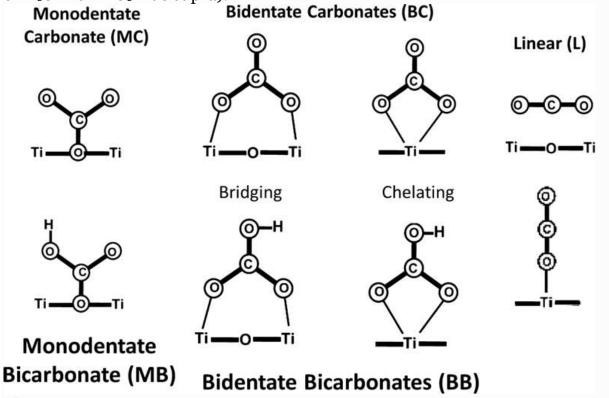
significant broadening of the absorption profile (increasing as the frequency of the maximum is decreased). Furthermore, none of the frequencies calculated by Arrouvel et al. [110] for adsorbed H₂O fit with the band at 3240 cm⁻¹. As for the set of signals at higher frequencies, the main effect of outgassing at 573 K was the depletion of the 3648 cm⁻¹ peak, accompanied by an overall decrease in intensity of the other components. Subsequent outgassing at increasing temperatures up to 773 K left only traces of the broad absorption in the 3600–2600 cm⁻¹ region and resulted in a progressive decrease in intensity of the 3750–3600 cm⁻¹ pattern (Fig. <u>2</u>a).

As indicated above, the dissociation of H_2O molecules on TiO₂ anatase requires terminations with a surface energy higher than the (101) types. Since advances in titania nanoparticles with controlled shape and size make possible the production on TiO₂ anatase nanoparticles with a platy shape, predominantly exposing surfaces possibly of the (001) type, it was thought such high energy terminations could be actually exposed at the surface of nanoparticles. In the frame of the FP7 european project SETNanoMetro [<u>111</u>], the surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO₂ anatase nanoparticles with dominant (001) type facets was investigated, also in comparison with "usual" TiO₂ anatase nanoparticles with a truncated bipyramidal shape, i.e. with dominant (101) type surface terminations [<u>112</u>]. The collection of data provided by several complementary techniques clearly indicated that after thermal removal of capping agents, i.e. F-, to obtain a bare TiO₂ material, high-energy (001) types terminations are not actually exposed at the surface of platy anatase nanoparticles calcined at 873 K (Fig. <u>3</u>).


Superhydrophilicity of TiO₂ nanoparticles induced by UV light irradiation: insights from diffuse reflectance near-IR (NIR) spectroscopy

IR spectroscopy can be a useful tool for investigating the structure of multi-layers of water molecules adsorbed on the surface of oxide nanoparticles, in particular when exploited in the near IR, in order to analyse the features of the signal due to $v_{asym}+\delta$ combination mode of H₂O, highly sensitive to the interactions water molecule which are involved in [113]. It is worth to notice that also the signals in the MIR range due to the fundamental stretching modes of H₂O show such sensitivity, but they suffer of the interference by those due to surface hydroxy groups. In particular, the overall decrease in intensity of the $v_{asym} + \delta$ signal due to water adsorbed at the surface of TiO₂ P25 nanoparticles in contact with air and exposed to UV light revealed that H₂O molecules adsorbed on the TiO₂ surfaces desorb during UV light irradiation by the heating effect of the light source (Fig. 4) [114]. Since the amount of the H₂O adsorbed on the TiO₂ surfaces decreased, the distribution of the hydrogen bonds within the H₂O molecules decreased, resulting in a decrease in the surface tension of the H₂O clusters. This insight was obtained by fitting the experimental profile with sub-bands, which were assigned to H₂O molecules experiencing different intermolecular interactions. In Fig. 4 the S₀ subband is due to H₂O molecules without any active hydrogen bonds; S₁ and S₂ to H₂O molecules with one or two active hydrogen bonds; S_n to polymeric chained H₂O clusters.

a Water adsorption isotherms at 298 K obtained from microgravimetric measurements. The samples have been previously outgassed at room temperature. **b** IR spectra of the samples outgassed at r.t. for 1 h. In both panels labelling is as follows: n_sh (nanosheets), pristine platy TiO_2 mainly exposing (001)-type facets; n-sh_NaOH, n_sh treated with a 0.01 M NaOH solution; n_sk_873 K, n_sh calcined at 873 K; bipy (bipyramidal): TiO_2 nanoparticles mainly limited by (101)-type facets. Adapted from Ref. [112]


Fitted combination ($v_{asym} + \delta$) sub-bands of H₂O molecules adsorbed on TiO₂ P25 nanoparticles exposed to air: **a** before UV light irradiation and **b** after UV light irradiation for 3 h.

Reprinted with permission from Ref. [114]

The decrease in the surface tension of H₂O under UV light irradiation was found to be one of the most important driving forces in which the H₂O clusters on the TiO₂ surface spread out thermodynamically, forming H₂O thin layers.

Carbon dioxide at TiO₂ surfaces

The CO₂ adsorption on TiO₂ is the first step in all the photoreduction processes described in the introductory section, and different structures for the adsorbate can be identified [<u>115</u>]. As depicted in Fig. <u>5</u>, they can grouped in: (1) linear structures (L); (2) monodentate carbonates (MC); (3) bidentate carbonates (BC), which can be bridging, if the carbonate is bound to two adjacent Ti centres, or chelating, if the bidentate bond is formed with a single Ti site; (4) monodentate and bidentate bicarbonates (MB and BB) obtained from the corresponding carbonate structures after interaction with water, which is a crucial co-reactant in many CO₂ photoreduction processes (for further details concerning the interaction of H₂O with TiO₂ vide supra).

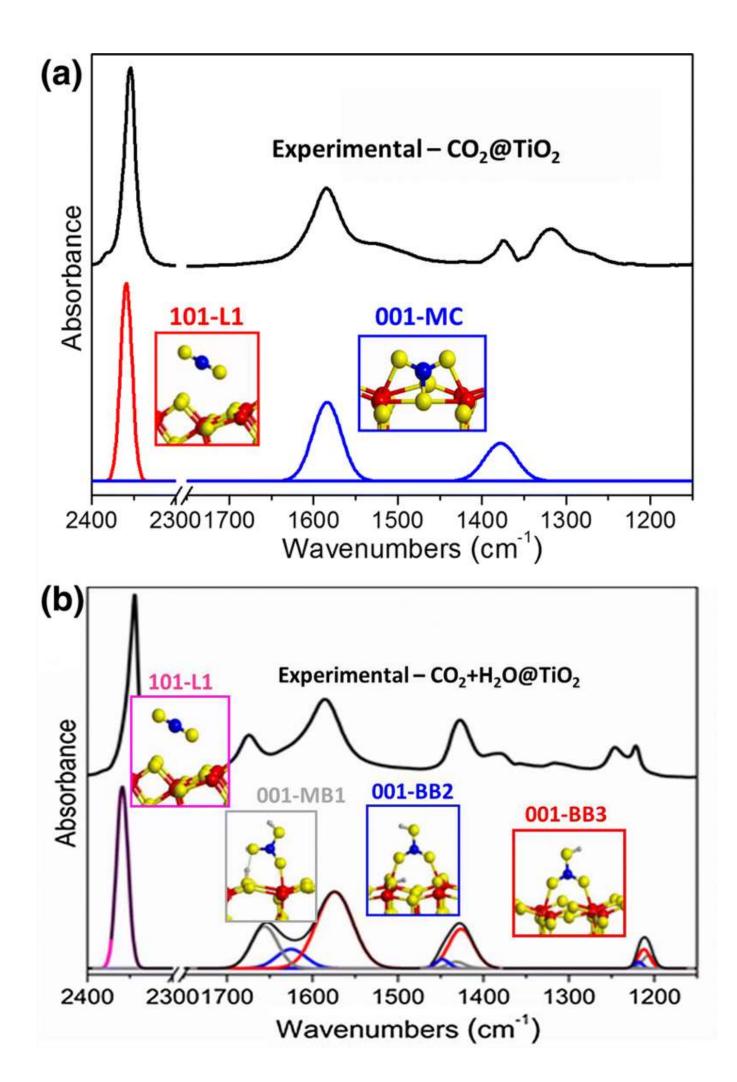
Fig. 5

Possible surface structures resulting from the interaction of CO_2 on TiO_2 . Unpublished Figure

Different characterization techniques (e.g. scanning probe microscopies, in situ spectroscopies, microcalorimetry, microgravimetry, temperature-programmed desorption) can be employed to investigate the surface processes occurring during

 $\rm CO_2$ adsorption and subsequent reactions. In our contribution, we will mainly focus on vibrational spectroscopy combined with ab initio calculations.

Single-crystal investigations of CO₂ adsorption on TiO₂


Concerning single-crystal investigations of CO_2 adsorption, the rutile (110) surface, being the most stable and easy to obtain, has been the most studied. By combining ultra-high vacuum (UHV) FTIR spectroscopy and DFT calculations, Cao et al. [<u>116</u>] showed that at 90 K on the reduced (110) surface CO_2 is first adsorbed on oxygen vacancy (V_0) sites, then on the five-coordinated Ti cations (Ti₅c) sites and finally on bridging oxygen (O_{br}) sites. Also several computational studies were devoted to the CO_2 -rutile (110) system employing different levels of theory from semiempirical extended Huckel molecular orbital calculations on small rutile clusters [<u>117</u>] to very accurate wave-function-based ab initio methods [<u>118</u>]. For instance, Kubas et al. [<u>118</u>] obtained quantitative agreement with respect to the experiment for CO_2 adsorption geometry and binding energy (within 1 kcal/mol) using "gold standard" coupled-cluster calculations with single, double and perturbative triple excitations, CCSD(T), extrapolated at the complete basis set limit.

Single-crystal data on anatase TiO_2 are less abundant and are mainly focused on the most stable (101) surface. Cao et al. [119] combined UHV FTIR spectroscopy and ab initio molecular dynamics to demonstrate that at 90 K adsorbed CO_2 does not keep a stationary adsorption state but shows a swing motion. In particular, one side of the linear CO_2 molecule is bound to a surface Ti_{5^c} site, while the other end swings within the (010) plane being tilted with respect to the [10–1] direction of an angle ranging from 10° to 60°.

Study of CO₂ adsorption and reactivity on TiO₂ nanoparticles

Experimental results obtained on powdered anatase TiO₂ samples are more copious and report the formation of several different carbonate or bicarbonate species (if co-adsorbed water is present) after CO₂ adsorption (see Fig. 5). However, a precise assignment of the different components present in the vibrational spectra is not straightforward, especially for commercial anatase/rutile mixtures, like the famous Evonik (Degussa) TiO₂ P25 [120, 121]. Mino et al. [115] combined FTIR spectroscopy and periodic DFT calculation to better elucidate the role of the different surface sites in the CO₂ adsorption and reactivity on both dehydrated and hydrated TiO₂ anatase nanoparticles. They showed that CO₂ is weakly adsorbed in molecular form at the most stable (101) surface. Conversely, the formation of carbonate and bicarbonate species is favoured at the (001) surface owing to the stronger (Lewis and Brønsted) basicity of its surface oxygens. Similar processes occur on the low coordinated sites present on high index facets and on steps, edges and corners [122]. The authors also created simulated IR spectra using the vibrational frequencies obtained from the DFT calculations for the most stable CO₂ surface structures. As visible in Fig. 6a, for dehydrated surfaces a good agreement with experimental spectra is obtained considering the presence of linear CO₂ molecules on the (101) surface and monodentate carbonate species on the (001) surface. Conversely, when CO₂ is adsorbed on partially

hydrated TiO₂ nanoparticles, different monodentate and bidentate bicarbonates are formed on (001) facets and on low coordinated sites (Fig. <u>6</u>b). These findings show that a controlled variation of the exposed anatase surfaces, exploiting shape-engineered nanoparticles [<u>123</u>], can modify the reaction paths and improve the final CO₂ reduction performance [<u>124</u>].

a Comparison between experimental and simulated IR spectra constructed employing computed IR data for dehydrated anatase surfaces, highlighting the presence of linear CO₂ molecules on the (101) surface (101-L1) and monodentate carbonate species on the (001) surface (001-MC). **b** As part (**a**), for partially hydrated anatase surfaces: in presence of co-adsorbed water, monodentate bicarbonates (001-MB1) and two different kinds of bidentate bicarbonates (001-BB2 and 001-BB3) are formed on the (001) surface.

Unpublished Figure reporting results published in Ref. [115]

Some researchers employed vibrational spectroscopy to investigate also the effect of UV–Vis irradiation on the CO₂ reactivity at the surface of TiO₂ nanoparticles [125, 126, 127, 128]. Liu et al. [125] studied the photocatalytic CO₂ reduction in the presence of water on different TiO₂ polymorphs by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). They monitored in dark conditions the evolution of the surface species after dosing CO₂ and H₂O on anatase nanoparticles noticing the initial formation (after 0–5 min) of CO₂-, HCO₃- and bidentate carbonates, followed by their decrease with a parallel growth of the water bending signal after 15 min (Fig. 7a). UV–Vis irradiation (see Fig. 7b) induced the reappearance of the CO₂- signals (1675 and 1249 cm⁻¹) and a progressive increase in the bicarbonate (1415 and 1221 cm⁻¹) and bidentate carbonate (1583 and 1345 cm⁻¹) bands. This behaviour suggests that the surface allows the photoexcited electrons, previously trapped in defect sites, to be transferred to the adsorbed CO₂. They also proposed a possible reaction pathway for the formation of carbon monoxide and methane from CO₂ photoreduction in the presence of water vapour on oxygen-deficient anatase and brookite TiO₂ phases, which is reported in Fig. 7c.

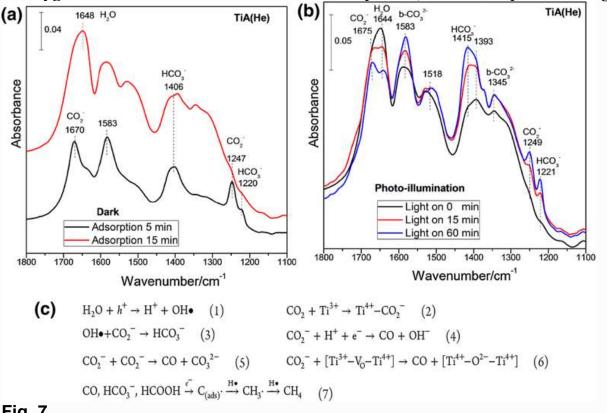


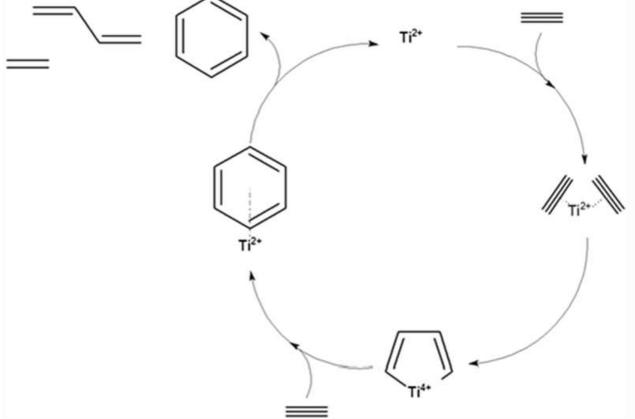
Fig. 7

In situ DRIFT spectra of CO_2 interaction, in presence of H_2O , with anatase TiO_2 **a** in the dark and **b** after subsequent UV–Vis irradiation as a function of time. **c** Possible reaction pathway for the formation of CO and CH_4 from CO_2 photoreduction on defective (non-stoichiometric) anatase and brookite TiO_2 phases.

Reproduced with permission from Ref. [125]

Finally, Wang et al. [<u>127</u>] investigated dispersed CeO_2/TiO_2 and bare TiO_2 anatase samples showing that unlike monodentate carbonates, bidentate carbonates and bidentate bicarbonates could be readily transformed to surface CO_2^- in the presence of H_2O under simulated sunlight irradiation.

Heterostructures at TiO₂ surface as organic sensitizers **The acetylene/TiO₂ interaction**


The surface chemical properties of an oxide are primarily related to the nature of the exposed coordinatively unsaturated sites in terms of the Lewis basicity of the O²⁻ anions and of the Lewis acidity of the Mⁿ⁺ metal sites (as well as of the Brønsted acidity of residual OH groups, if present) [129, 130, 131]. From this point of view, the Ti₄₊O₂₋ pairs present at the TiO₂ surface are usually considered to have weaker Lewis acidity and basicity with respect to oxides like MgO or Al₂O₃, which are, for instance, highly effective in the dissociative adsorption of a weak acid molecule like acetylene to give $M_{n+}(-C \equiv CH)$ and OH-species [132]. It is, however, a matter of facts that due to its semiconductor nature TiO₂ can take advantage of other characteristics which are absent on insulators like MgO or Al₂O₃: one is obviously the reduced band gap (at the basis of the photoactivity) while the other is represented by the redox properties of the Ti¹⁺ centres. As we will see in the following, the reactivity of acetylene (and in general of alkynes) at the TiO₂ surface depends mostly on the redox properties of the metal centres rather than on the Lewis properties. Other important factors are the nature of the TiO₂ polymorph used as substrate (rutile or anatase) and the nature of the exposed crystallographic faces.

Starting with the studies devoted to the interaction with the well-defined surfaces of single crystals, the adsorption from the gas phase of alkynes of general formula RC=CH (R = H or CH₃) at the (001) surface of rutile has been systematically studied by Barteau et al. [133, 134]. Stoichiometric (completely oxidized) samples result to be completely inactive. On the contrary, the same surface partially reduced by sputtering and hence containing a discrete concentration of Ti²⁺ sites shows a marked tendency to trimerize acetylene to benzene as main product (with smaller amounts of dienes and olefins formed respectively by dimerization and hydrogenation side reactions).

Role of the TiO₂ surface sites in affecting the oligomerization/condensation mechanisms

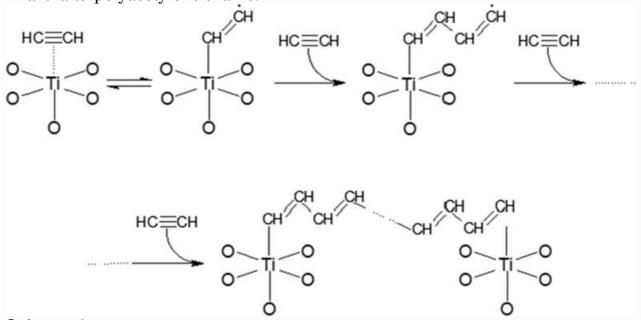
The reaction mechanism proposed for acetylene is shown in Scheme <u>1</u>: after the initial adsorption of two C_2H_2 molecules on the reduced Ti_{2^+} sites, a cyclic intermediate is formed where Ti_{2^+} is temporarily oxidized to Ti_{4^+} . Subsequent

insertion of a further acetylene molecule leads to trimerization with formation of adsorbed benzene (desorbed at about 400 K) and the closure of the catalytic cycle by reduction of the metallic centre from Ti_{2^+} to Ti_{4^+} .

Scheme 1

Mechanism of the acetylene trimerization reaction on the face (100) of TiO_2 rutile single crystal.

Adapted from Ref. [133]

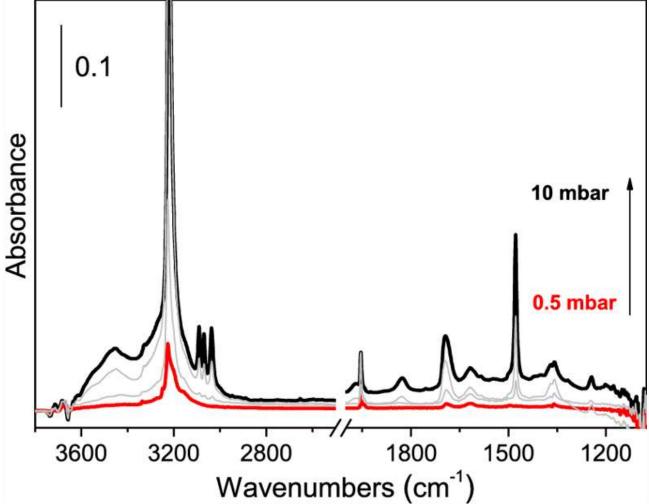

Trimerization to benzene is also the main reaction observed on dehydroxylated (by outgassing in vacuo at 773 K) nanocrystalline TiO_2 P25 Degussa (now Evonik), a material consisting as well known of an anatase and rutile mixture in *ca*. 3: 1 proportion [135].

The formation of benzene is on the contrary not reported by Rives-Arnau and Sheppard [136] who have studied by Raman spectroscopy the HC=CH interaction with polycrystalline rutile samples (mean size *ca*. 10 nm) obtained by hydrolysis of TiCl₄. The main reaction observed at room temperature on these nanocrystals, which are supposed to preferentially expose (110) terminations, is actually the acetylene oligomerization to form linear *trans*-polyacetylene chains.

By comparing the absorption frequencies of the $\pi \to \pi^*$ optical transition with the vibrational frequencies of the $v_{c=c}$ stretching mode of the obtained products and with the position of the absorption maxima in the electronic spectra of a series of polyenes containing a known number of conjugated double bonds, the authors conclude that the Raman bands they observe in the 1650–1500 cm⁻¹ region witness the formation of a mixture of oligomeric chains containing up to a maximum of 20

conjugated double bonds. Chains of this length have absorption in the red region of the spectrum which explains the blue colour of the samples. Despite the use of different solvents, it was not possible for the authors to extract the products and hence to separate them from TiO₂, as can expected for chains anchored to the TiO₂ surface by chemical bonds. Based on these results, this study can be regarded as an early example of the preparation of a hybrid material consisting of a photoactive oxide covered with antenna molecules capable of absorbing radiation in the Vis region.

As far the reaction mechanism is concerned, the four- and five-coordinated Ti_{4+} sites present in equal numbers on the predominant faces (110) of the rutile nanocrystal are thought to be only the precursor of the true active sites [137]. Because of the adopted activation procedure prior dosage of acetylene (i.e. outgassing at 723 K to dehydroxylate the surface and subsequent cooling in vacuum), it is in fact expected that TiO_2 loses oxygen with the consequent reduction of a considerable fraction of the Ti_{4+} centres to highly unsaturated Ti_{3+} , responsible for the acetylene oligomerization. As represented in Scheme 2, the oligomeric chains are supposed to start on certain site and to end on a neighbour, thus explaining the limited length (up to 20 conjugated double bonds) of the final *trans*-polyacetylene chains.



Scheme 2

Acetylene oligomerization mechanism of on nanocrystalline TiO₂ rutile. Adapted from Ref. [<u>137</u>]

The case study of acetylene TiO_{2} P25 interaction via FTIR and EPR spectroscopies

Some of us have recently reconsidered the interaction of with TiO_2 P25 samples by a detailed investigation (by means of vibrational IR and Raman and UV–Vis diffuse reflectance spectroscopies) of the effects of the gas pressure, the contact time and the temperature on the C₂H₂/TiO₂ interaction [138]. It resulted that these parameters play a very important role in the distribution of the reaction products. In particular, IR spectroscopy highlighted that trimerization to benzene is main reaction channel for acetylene equilibrium pressures up to 10 mbar, as demonstrated by the appearance of the typical manifestations of aromatic CH stretching modes in the 3100–300 cm⁻¹ region and of ring deformations modes at *ca.* 1480 cm⁻¹ (Fig. <u>8</u>). The very intense band at 3225 cm⁻¹ and the weak one at 1950 cm⁻¹ are also noteworthy as they are due, respectively, to the \equiv C–H and C \equiv C (inactive in the free molecule) stretching modes of acetylene largely adsorbed on the nanocrystal surfaces. Both adsorbed acetylene and benzene are immediately desorbed by degassing at 293 K.

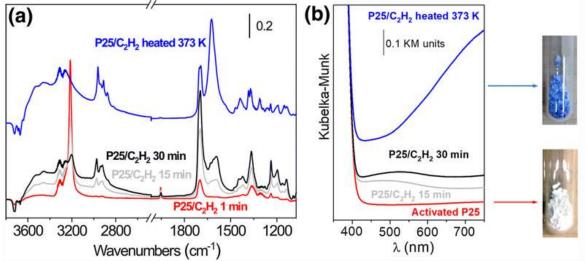
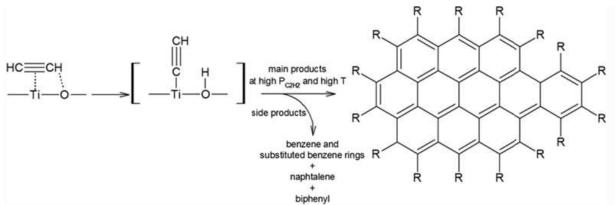


Fig. 8

Background subtracted IR spectra of acetylene adsorbed at low pressure (up to 10 mbar) on activated (outgassed at 773 K) and fully oxidized TiO₂ P25. Adapted from Ref. [<u>138</u>]


The manifestations of adsorbed acetylene are still present when acetylene is dosed at higher pressures (> 100 mbar), but those due to benzene become extremely weak (Fig. <u>9</u>a), suggesting that its formation is depleted in the actual experimental conditions. Instead, new spectral features develop with contact time (and by heating at 373 K in acetylene atmosphere) consisting of: (1) medium intensity bands in the 3000–2800 cm⁻¹ region which indicate the formation of relevant amounts of saturated CH groups (mainly –CH₃ and to a lesser extent –CH₂); (2) a broad absorption in the region 3650–3250 cm⁻¹ suggesting the formation of OH groups perturbed by hydrogen bonding and (3) the progressive growth of complex features in the region below 1750 cm⁻¹ due to the formation of highly unsaturated

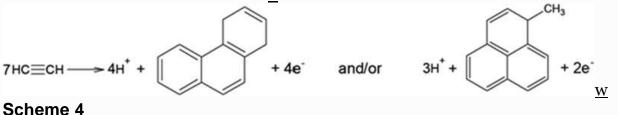
products containing an extensive system of conjugated double bonds. Notably, the formation of these products is paralleled by the progressive decrease in the intensity of the bands due to physically adsorbed acetylene, which is consumed in the process. The hypothesis of progressive growth of products containing an increasing number of conjugated double bonds is confirmed by the optical spectra in Fig. 9b, where the development of a broad absorption gradually shifting from the UV–Vis towards the NIR is observed, which is consistent with the dramatic change in colour of the sample from white to intense blue. The colour does not disappear by exposure to the atmosphere, thus excluding that it is only due to the formation of reduced Ti³⁺ species, or to the treatment of the sample with organic solvents, thus suggesting that the responsible products are strongly adsorbed on the TiO₂ surface. The contemporary formation of -O-H and saturated, hydrogen rich, -CH₃ (and -CH₂) moieties and conjugated double bonds cannot be accounted for by supposing the formation of linear polyacetylene chains as in Ref. [137], which would maintain the 1:1 C:H ratio of the free C₂H₂ molecule. Instead, it is fully justified by a concerted mechanism in which the extraction of hydrogen to form OH and methyl or alkyl groups is accompanied by self-assembling of the carbon-rich acetylene residues to form condensed products of high molecular weight, as shown in Scheme 3.

Fig. 9

a Background subtracted IR spectra of C_2H_2 adsorbed at 100 mbar on activated TiO₂ P25. The bottom series shows the evolution with the contact time at 293 K (red curve: immediately after acetylene dosage from the gas phase. Grey and black curves: after 15 and 30 min.) The blue spectrum is the result of increasing the temperature up to 373 K in C_2H_2 atmosphere. **b** UV–Vis spectra of the pure activated TiO₂ sample; the other spectra were obtained in the same contact time and temperature conditions of part a. The pictures in the right part are those of the activated solid and of the same sample after the thermal treatment at 373 K in acetylene. The dramatic change in colour due to formation of conjugated and condensed reaction products is evident. Adapted from Ref. [138]

Scheme 3

Schematic representation of the reaction pathway of acetylene on TiO₂ P25. R=H, CH₃, alkyl groups.


Adapted from Ref. [138]

In a subsequent work the interaction of C_2H_2 with P25, anatase and rutile TiO₂ was studied for the first time by EPR spectroscopy [139]. In all cases upon acetylene dosage on highly dehydroxylated samples, the appearance of EPR signals undoubtedly associated with the formation of reduced Ti³⁺ species is observed. This significant result allows to better detail the mechanism leading from acetylene coordination (first step in Scheme <u>3</u>) to the formation of the final condensed products. While excluding homolytic dissociation of the HCC–H bond (unlikely in the actual reaction conditions), it is hypothesized that the reduced Ti³⁺ centres are formed by electron transfer from a HCC- acetylide fragment formed, by \equiv C–H heterolytic dissociation (with parallel formation of OH groups as evidenced by the IR spectra: vide supra), to the solid whose propensity to reduction is well documented. The initial phases of the reaction can therefore be summarized as:

$$\begin{split} HC &\equiv CH(g) + Ti4 + -O2 - \rightarrow HC \equiv CH(ads) + Ti4 + -O2 - \rightarrow [HC \equiv C^{-}(ads)Ti4 + -OH^{-}] \rightarrow HC \equiv C^{\cdot}(ads) \\ Ti3 + -OH^{-}HC \equiv CH(g) + Ti4 + -O2 - \rightarrow HC \equiv CH(ads) + Ti4 + -O2 - \rightarrow [HC \equiv C(ads) - Ti4 + -OH^{-}] \rightarrow HC \equiv C(ads) \cdot Ti3 + -OH^{-} \end{split}$$

where $Ti_{4+}-O_{2-}$ represents Lewis acid/base pairs at the TiO_2 surface. The HCC species would then be responsible for the formation of simple condensed products, such as naphthalene, as it follows: $3C_2H_2+2HC\equiv C \rightarrow C_8H_{10}3C_2H_2+2HC\equiv C \rightarrow C_8H_{10}$

The ability of the surface to accept protons, because of the basicity of the surface O_{2-} , and at a much larger extent the propensity of the solid to accept electrons can then be imagined as the driving forces for the formation of highly unsaturated, condensed products (with C:H >>1 ratios) and of saturated groups, according to mechanisms like those in Scheme <u>4</u>.

Schematic representation of the possible pathways leading to formation of condensed aromatics products by interaction of acetylene with TiO_2 . The side products protons and electrons are captured at the solid surfaces to form surface hydroxyls and reduced Ti_{3^+} centres. Adapted from Ref. [139]

The validity of the reaction pathways proposed in Refs. [138, 139] and summarized in the above schemes has been recently supported by DFT (density functional theory) simulations of the interaction of acetylene with the (101) and the less stable (001) surfaces of anatase [140]. Both the faces result to be fully inactive when saturated with OH groups, while after dehydroxylation they gain the ability to adsorb the acetylene molecules through dispersive forces (physical adsorption). Nevertheless, the more stable (101) face is still chemically inactive, being unable to promote the acetylene dissociation. It also results inactive towards the simple acetylene trimerization reaction to benzene, even when reduced Ti³⁺ centres are introduced by simulating oxygen vacancies.

The calculations reveal a radically different behaviour of the less abundant and less stable (001) faces. It is, for instance, found that on this surface the entire sequence of reactions, finally leading to the formation of naphthalene, supposed to go through: (1) C_2H_2 adsorption, (2) heterolytic dissociation on TiO pairs, (3) insertion of a first C_2H_2 molecule in the C_2H_2 fragment to form a four-membered $C_4H_{2^{2-}}$ chains, (4) insertion of a further molecule to form a C_6H_4 ring anchored to the surface by σ bonds between the two terminal C atoms and two Ti centres and (5) insertion of two more acetylene molecules to form strongly adsorbed naphthalene (C_8H_{10}), is energetically favoured.

The overall reaction can be summarized as:

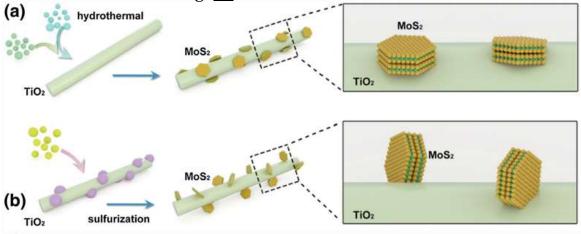
 $\begin{aligned} 5C_{2}H_{2(g)} + 2Ti_{4+(s)} + 2O_{2-(s)} & \rightarrow C_{10}H_{8(ads)} + 2Ti_{3+(s)} + 2OH_{-(s)}5C_{2}H_{2(g)} + 2Ti_{(s)}4 + + 2O(s)_{2} \\ - & \rightarrow C_{10}H_{8(ads)} + 2Ti_{(s)}3 + + 2OH_{(s)} - \end{aligned}$

where the need for the contemporary formation of condensed (conjugated) products, surface hydroxyls and reduced Ti³⁺ species well account for the IR, UV–Vis and EPR results in Refs [<u>138</u>, <u>139</u>].

The hypothesis advanced by some of us in Ref. [138] that reaction of acetylene with the TiO₂ surface in controlled experimental conditions could represent a useful route for the in situ preparation of graphene layers (possibly acting as stabilizers of the photoexcited electrons) has recently found an experimental verification in the work of Shao, Zhang and co-workers [141, 142]. By using an acetylene gas flow in the presence of H₂ excess and Ar as carrier, they were in fact successful in growing (at 923 K) highly uniform graphene layers (including single and bilayers) directly and at the surface of rutile TiO₂ single crystals [142] and anatase TiO₂ nanosheets [141].

This CVD strategy allows to maximize the photocatalytic activity of the graphene/TiO₂ hybrid with respect to other preparation procedures (see the references quoted in the introduction for their description) because it avoids the formation of interfacial contaminates and ensures a better contact uniformity

between the two phases. These unique characteristics allowed a more precise investigation of the dynamic of the charge transfer at the interface under illumination. In this respect, ultrafast transient absorption (TA) measurements performed under ambient conditions showed that the average lifetime of the photoexcited electrons depends on the time of the CVD reaction (and in turn on the extension of the surface graphene layer) following a volcano curve. The maximum of the curve is obtained by covering the surface of the TiO₂ nanosheets by a continuous and uniform single layer. In this condition, the lifetime is nearly double with respect to pure TiO₂. A volcano curve is also observed as far the photocatalytic activity is concerned, but the maximum is now observed for a bilayer. The discussion of the reasons of these apparently conflicting differences is outside the scope of this review, and the reader is referred to the original papers for details.


Heterostructures at TiO₂ surface as inorganic sensitizers MoS₂/TiO₂ heterostructures: the role of the interface

In order to take on the challenges and the opportunities of new applications, the understanding of the relationship between structure and properties of many MoS₂/TiO₂-based heterostructures, obtained through different synthetic strategies, including ex situ and in situ approaches becomes essential. Concerning the ex situ method, the MoS₂ and/or TiO₂ materials are fabricated in advance, and then, they are combined together by impregnation, drop-casting, ultrasonication, ball milling, solgel or hydrothermal/solvothermal methods [23, 85]. The main advantages of the ex situ methods are low cost and scalable production, but multiple steps are required, and, more notably, highly heterogeneous MoS₂/TiO₂based composites with weak interface interactions are often obtained. Conversely from the in situ methods, which are based on chemical reactions occurring simultaneously or in different steps, composites with strong interface contacts can be achieved, with a more uniform dispersion, although at a low yield [23]. However, the relatively small crystal mismatch (< 5%) between TiO₂ (i.e. anatase and rutile) and MoS₂ structures [23] can help in the assembling peculiar TiO₂based structures, thus achieving a satisfactory interface contact without aggregation [143, 144, 145, 146]. As for the lattice mismatch, that is, the different lattice constants and atomic arrangements between MoS₂- and TiO₂-based supports [143, 144, 145], the above-mentioned role of the interface, in affecting the charge transport phenomena or the catalytic processes, which in turn are depending on the nature and atomic structure of the active sites, has to be highlighted. Therefore by designing model systems of controlled morphology, the interface structure and then the charge control can be properly tailored [147]. In the following, we have chosen a few case studies in order to highlight the role of the interface structure in affecting the peculiar functionalities of the obtained architectures.

MoS₂/TiO₂ case studies via ex situ and in situ approaches

It is known that, due to the layered nature and flexibility of MoS₂ slabs, one or few layer thick, the preferred orientation of the MoS₂ on TiO₂ surfaces is along the basal planes, thus minimizing the surface energy [<u>148</u>]. As such configuration

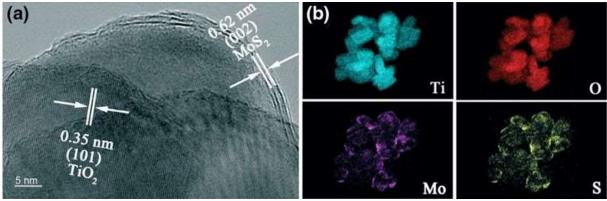
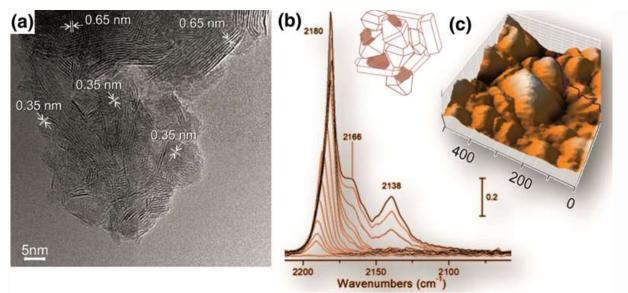
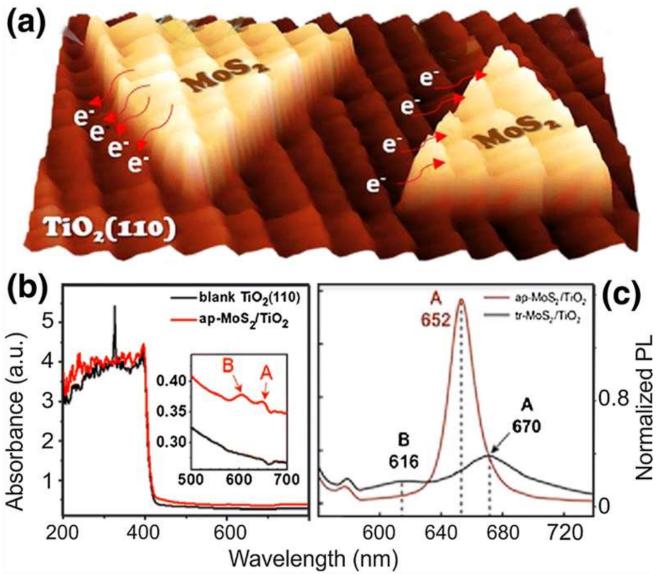

leads to a low exposure of the active edge sites, which are more conductive than the basal planes, the possibility of making MoS_2 standing on the TiO_2 , e.g. connecting the edges of few-layer MoS_2 , gives rise to a more effective heterostructure to improve photocatalytic hydrogen evolution, due to a better charge transport pathway [70]. Concerning this point, he and co-authors reported a strategy to control the MoS_2 slab orientation on the TiO_2 facets by using ex situ method (hydrothermal method) and two steps ex situ/in situ methods (CVD). Starting from MoO_2 -decorated anatase fibres, the authors were able to manipulate the nucleation and growth processes of MoS_2 in such a way that according to the different approaches, MoS_2 particles, differently oriented with respect the TiO_2 support, were obtained. In particular, from the hydrothermal method MoS_2 arranged with the basal planes, whereas from CVD method MoS_2 arranged perpendicular to the basal planes on TiO_2 surface were, respectively, obtained. This is schematized in Fig. <u>10</u>.

Fig. 10


Schematic representation of the MoS_2/TiO_2 preparation: **a** by wet chemical method (MoS_2 arranged on TiO_2 surface with the basal planes), **b** by CVD (MoS_2 arranged on TiO_2 surface perpendicular to the basal planes). Reproduced with permission from Ref. [70]

More recently, Lin et al. [79] showed the fabrication of 2D nanophotocatalysts MoS_2/TiO_2 with a tuneable decoration amount of layered MoS_2 nanosheets via ex situ two-step hydrothermal methods. The resulting MoS_2/TiO_2 heterostructures were HRTEM imaged (Fig. <u>11</u>a) and mapped with elemental analysis (Fig. <u>11</u>b). Notably, two kinds of lattice fringes, 0.62 nm and 0.35 nm spaced, corresponding to the (002) planes of MoS_2 and to (101) planes of anatase TiO_2 , were found (Fig. <u>11</u>a). From the EDAX maps (Fig. <u>11</u>b), the elemental distribution of Ti, O, Mo and S was evidenced Taken together, these findings corroborate the decoration of TiO_2 nanoparticles by curved MoS_2 sheets, made by layered basal planes. Some more, the optimal MoS_2 loading to give the best performance for either photocatalytic degradation or hydrogen production was determined to be 10 wt%, thus confirming the synergistic effect between MoS_2 and TiO_2 , which accelerates the separation and migration efficiency of charge carriers, as well as enhances the light harvest efficiency [79].


a HRTEM image of a MoS₂-decorated TiO₂ particle showing the MoS₂-TiO₂ interface; **b** Ti, O, Mo and S elemental mapping of MoS₂-decorated TiO₂. Reproduced with permission from Ref. [<u>79</u>]

However, irrespective of the stacking degree, the curvature of the MoS₂ slabs at the surface of some oxides (SiO₂, Al₂O₃, MgO, TiO₂ and titanate nanotubes) [143, 146, 149] has been observed rather frequently being depending primarily on the nature of the interaction of MoS₂ with the support, and on the type of defects (i.e. vacancies and dislocations) at the surface. As matter of fact, considering composites prepared also via in-situ and bottom-up approach, the authors observed that the MoS₂/support interactions increase from SiO₂ to y-Al₂O₃ to TiO₂ until to MgO, which means that such interaction is maximized when MoS₂ slabs "act as chemical ligand" with a mutual phase reactivity [149]. A MoS₂/TiO₂ composite (36 wt% Mo) recently obtained also via in situ strategy with a bottom-up MoS₂ growth is illustrated in Fig. 12a. MoS₂ nanosheets were obtained by Scarano and co-authors [146] at the surface of anatase via the sulphidation of MoO_x-titanate nanotubes. In this work, the authors took advantage of both the thermal transformation of titanate nanotube into anatase nanoparticles and the contemporary sulphidation with CS₂. From the FTIR spectra of CO adsorbed at 100 K at decreasing coverage on the MoS₂/TiO₂ surface (Fig. 12b), the following features can be briefly summarized: (1) the band at 2180 cm⁻¹ shifting at 2190 cm⁻¹ at low coverage and the shoulder at 2166 cm⁻¹, which can be associated with (101) and (001) TiO_2 surfaces, respectively; (2) the disappearance of the band at 2113 cm⁻¹, associated with CO adsorbed on the reduced Mox+ centres (x < 4). As discussed by the authors, the presence of reduced Mo^{x+} centres is related to sulphur vacancies on highly defective situations during the formation of the sulphide phase. Based on these results, the presence of MoS₂decorated TiO₂ particles was also confirmed, and additionally AFM imaged (Fig. <u>12</u>c). From this figure, a surface characterized by irregular hills and valleys can be highlighted.

 MoS_2/TiO_2 sample obtained by the in-situ approach: **a** HRTEM image of few-layer MoS_2 sheets extensively covering the TiO₂ anatase particles. (002) planes of MoS_2 and (101) planes of anatase are reported; **b** FTIR spectra of CO adsorbed at 100 K at decreasing coverage on the sample surface after sulphidation with CS₂ at 673 K, reduction with H₂ and re-sulphidation with CS₂; **c** 3D AFM image of the same surface is characterized by irregular hills and valleys, where along a selected line the presence of few-layer thick MoS_2 slabs can be detected. Reproduced with permission from Ref. [146]

Concerning the synthesis of more ordered systems, it is noteworthy a recent paper by Liu et al. [150] that, by using MoO₃ and sulphur powder as solid precursors, have successfully synthesized by in situ CVD high-quality single-layer MoS₂ sheets on the atomically flat rutile TiO₂(110) single-crystal surfaces. The as-grown triangularly shaped sheets on TiO₂ (110) single-crystal substrate are AFM imaged in Fig. <u>13</u> (upper panel). Notice from UV–visible spectra (Fig. <u>13</u>b, bottom panel on the left) the typical features of MoS₂ particles at the 650 nm and 605 nm due to the A and B excitonic peaks ([<u>151</u>] and ref. therein). The photoluminescence spectrum (PL) of the sample (Fig. <u>13</u>c, bottom panel on the right) displayed a single highly symmetric peak centred at 652 nm corresponding to the aforementioned A excitonic emission of MoS₂, which is demonstrating the luminescing uniformity of the fabricated MoS₂ nanosheet.

a 3D AFM image of single-layer MoS_2 sheets on TiO_2 (110) single-crystal substrate; **b** UV–Vis spectrum of MoS_2/TiO_2 heterostructure (red line) as compared with rutile TiO_2 spectrum (black line); **c** PL spectra of the same MoS_2/TiO_2 heterostructure as compared to 1L-MoS₂ transferred onto bare r-TiO₂ (110) surface

Reproduced with permission from Ref. [150]. (Color figure online)

From the AFM, PL analyses and from other results, including STM, XPS, not reported for sake of brevity, the authors conclude that, beside the monolayer thickness, the single crystallinity of the MoS_2 adlayer as well as the atomic flatness of the composite surface, also the enhanced charge flow across the interface of MoS_2/TiO_2 high-quality heterojunctions under different irradiation conditions can be shown. Moreover, the authors state that the luminescence properties of MoS_2 are significantly tailored upon coupling with the TiO_2 surface. From all, it comes out that they have provided a proper TMD/oxide model system for a deeper understanding at the atomic level of the photocatalytic mechanisms occurring at the interface properties of the transition-metal dichalcogenides and oxide semiconductors.

In conclusion, in this section we stated the relevance of controlling the synthesis strategies to obtain high-quality MoS_2/TiO_2 heterostructures, thus highlighting the role of the interface, being the interface the 'heart' of the overall properties [23]. In summary, we believe that notwithstanding the huge amount of studies on the MoS_2/TiO_2 -based composites, to whose we remind the reader to refer, the research is still in an early stage and many challenges have to be addressed also to optimize synthesis methods and architectures of possible new advanced devices.

Summary and perspectives

In this review, we focused on molecular and nanoscale phenomena occurring at TiO_2 surfaces as consequence of both the H₂O and CO₂ interaction or the grafting of organic/inorganic systems (graphene, MoS₂). More in detail, it is shown that the adsorption of water on TiO₂ surfaces is governed by a precise balance between molecular and dissociative adsorption, being the molecular adsorption favoured on anatase (101) single crystals with a small coverage of water and the dissociative one on more defective higher energy surfaces, like those of the (110) type, as well as edges and corners. On these sites, it was found H₂O molecules to dissociate, forming hydroxy groups, which play an important role as scavenger of photogenerated holes, forming OH radicals. Some results are also reported on the activity of TiO₂ anatase nanoparticles with dominant (001)-type facets, in comparison with "usual" TiO₂ anatase nanoparticles with a truncated bipyramidal shape, i.e. with dominant (101)-type surface terminations. Some more, an important output of the interfacial water-TiO₂ events is the arising of superhydrophilicity of TiO₂ thin films by exposure to UV light. This phenomenon was recognized to have a relevant technological impact for the fabrication of photofunctional materials.

Concerning CO_2 interaction, from combined FTIR spectroscopy and periodic DFT calculations, the role of the different surface sites in the CO_2 adsorption and reactivity on both dehydrated and hydrated TiO_2 anatase nanoparticles has been elucidated. It was stated that CO_2 is weakly adsorbed in molecular form at the most stable (101) surface, whereas the formation of carbonate and bicarbonate species is favoured at the (001) surface owing to the stronger (Lewis and Brønsted) basicity of its surface oxygens as well as on the low coordinated sites present on high index facets and on steps, edges and corners. These findings show that a controlled variation of the exposed anatase surfaces, exploiting shape-engineered nanoparticles can modify the reaction paths and improve the final CO_2 reduction performance. Lastly, insights on the reaction pathways for the formation of carbon monoxide and methane from CO_2 photoreduction in the presence of water vapour on oxygen-deficient anatase and brookite TiO_2 phases have been reported.

Moving to organic/inorganic hybrid materials, the acetylene/TiO₂ interaction has been shown as basis of a complex, but versatile, surface chemistry which can be addressed to the growth under mild conditions (like low temperature and low C_2H_2 pressure) and directly on the TiO₂ surface of a variety of meaningful products. These range from benzene and other small aromatic molecules, to strongly adsorbed coloured oligomeric chains up to graphene-like patches, or even continuous graphene layers, uniformly covering the oxide surface (i.e. organic surface structures possibly acting as stabilizers of the TiO₂ photocharges. The progressive growth of products containing an increasing number of conjugated double bonds is consistent with the dramatic change in colour of the sample from white to intense blue, and with the contemporary formation of -O-H and saturated, hydrogen rich, $-CH_3$ (and $-CH_2$) moieties, conjugated double bonds. These features have been fully explained with a concerted mechanism in which the extraction of hydrogen to form OH and methyl or alkyl groups is accompanied by self-assembling of the carbon-rich acetylene residues to form condensed products of high molecular weight. It has been shown that the reaction of acetylene with the TiO₂ surface in controlled conditions could represent a useful route for the in-situ preparation of uniform graphene layers at the surface of rutile TiO₂ single crystals and anatase TiO₂ nanosheets.

Within the heterostructures grafted at the surface of TiO₂ polytypes, 2D layered materials such as MoS₂ have been discussed as promising material, also for its high activity, chemical stability, ability to modify the band gap from an indirect semiconductor (1.3 eV) to a direct semiconductor (1.9 eV), moving from the bulk to ultrathin and nanosized structures. Due to its favourable optical properties, that is, excitonic absorption bands in the visible and efficient interfacial chargetransfer region between MoS₂- and TiO₂-based materials, MoS₂ was considered of great interest to perform MoS₂/TiO₂ hybrid composites, made by TiO₂ sensitized with MoS₂, which causes to increase the visible light absorption ability of TiO₂based systems. For this, a few MoS₂/TiO₂-based heterostructures, obtained through different synthetic strategies, have been described, including ex situ and in situ approaches, by highlighting the main advantages and drawbacks of both approaches. Briefly from ex situ methods, highly heterogeneous MoS₂/TiO₂-based composites with weak interface interactions are often obtained, whereas from the in-situ methods, a more uniform dispersion of MoS₂/TiO₂-based composites has been shown. The peculiar role of the MoS_2/TiO_2 interface, in affecting the charge transport phenomena or the catalytic processes, which in turn are depending on the nature and atomic structure of the active sites, has been highlighted.

More in general, we can state that by designing model systems of controlled morphology, the surfaces structure and then the specific reactivity of TiO_2 single crystal/nanoparticles or the interfaces structure of more complex MoS_2/TiO_2 -based composites together with the charge control phenomena can be properly tailored to the expected functionalities of the obtained architectures.

Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1.A. Fujishima, K. Honda, Nature 238, 37 (1972)

2.A. Tanaka, K. Teramura, S. Hosokawa, H. Kominami, T. Tanaka, Chem. Sci. 8, 2574 (2017)

3.M. Kitano, M. Matsuoka, T. Hosoda, M. Ueshima, M. Anpo, Res. Chem. Intermed. **34**, 577 (2008)

4.Y. Yoshida, M. Matsuoka, S.C. Moon, H. Mametsuka, E. Suzuki, M. Anpo, Res. Chem. Intermed. **26**, 567 (2000)

5.W.J. Feng, L.Y. Lin, H.J. Li, B. Chi, J. Pu, J. Li, Int. J. Hydrogen Energy 42, 3938 (2017)

6.S. Onsuratoom, S. Chavadej, T. Sreethawong, Int. J. Hydrogen Energy 36, 5246 (2011)

7.T.V. Nguyen, D.J. Choi, O.B. Yang, Res. Chem. Intermed. 31, 483 (2005)

8.B. Abdollahi, A. Shakeri, S. Aber, M. Sharifi Bonab, Res. Chem. Intermed. 44, 1505 (2018)

9.Z. Boutamine, O. Hamdaoui, S. Merouani, Res. Chem. Intermed. 43, 1709 (2017)

10.L. Cermenati, A. Albini, P. Pichat, C. Guillard, Res. Chem. Intermed. **26**, 221 (2000) **11**.D. Mas, P. Pichat, C. Guillard, Res. Chem. Intermed. **23**, 275 (1997)

12.L. Amalric, C. Guillard, P. Pichat, Res. Chem. Intermed. 21, 33 (1995)

13.C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. **33**, 359 (2007)

14.A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, H. Haddadi, Res. Chem. Intermed. **41**, 7299 (2015)

15.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature **388**, 431 (1997)

16.A. Fujishima, K. Hashimoto, T. Watanabe, *TiO2 photocatalysis fundamentals and applications* (BKC Inc., Tokyo, 1999)

17.A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photob. C Photochem. Rev. 1, 1 (2000)

18.H. Nishikiori, M. Tagahara, L. Mukoyama, T. Fujii, Res. Chem. Intermed. 36, 947 (2010)

19.S. Remiro-Buenamanana, H. Garcia, ChemCatChem 11, 342 (2019)

20.W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Mater. 26, 4607 (2014)

21.V. Jeyalakshmi, K. Rajalakshmi, R. Mahalakshmy, K.R. Krishnamurthy, B. Viswanathan, Res. Chem. Intermed. **39**, 2565 (2013)

22.Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C-Photochem. Rev. 25, 106 (2015)

23.B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Nanoscale 10, 34 (2018)

24.U. Diebold, Appl. Phys. A 76, 681 (2003)

25.U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

26.X.-Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)

27.Y. Kubokawa, M. Anpo, Stud. Surf. Sci. Catal. 21, 127 (1985)

28.M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)

29.H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature **453**, 638 (2008)

30.A. Selloni, Nat. Mater. 7, 613 (2008)

31.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

32.F. Cesano, D. Pellerej, D. Scarano, G. Ricchiardi, A. Zecchina, J. Photochem. Photob. A-Chem **242**, 51 (2012)

33.F. Cesano, I. Rattalino, F. Bardelli, A. Sanginario, A. Gianturco, A. Veca, C. Viazzi, P. Castelli, D. Scarano, A. Zecchina, Carbon **61**, 63 (2013)

34.E. Groppo, C. Lamberti, F. Cesano, A. Zecchina, PCCP 8, 2453 (2006)

35.H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M.A. Akia, J. Ind. Eng. Chem. 26, 1 (2015)

36.M.J. Uddin, D.E. Daramola, E. Velasquez, T.J. Dickens, J. Yan, Phys. Status Solidi RRL **8**, 898 (2014)

37.Y. Wang, S. Lkhamjav, B. Qiu, C. Dong, C. Dong, Y. Zhou, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. **43**, 2055 (2017)

38.M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38, 1261 (2012)

39.N. Sakaguchi Miyamoto, R. Miyamoto, E. Giamello, T. Kurisaki, H. Wakita, Res. Chem. Intermed. **44**, 4563 (2018)

40.S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Res. Chem. Intermed. 44, 3115 (2018)

41.J. Liu, L. Zhang, X. Yao, S.S.C. Chuang, Res. Chem. Intermed. 43, 5041 (2017)

42.S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Catalysts 7, 214 (2017)

43.B.P. Dhamaniya, A. Kumar, A.K. Srivastava, J.S. Tawale, Res. Chem. Intermed. 43, 387 (2017)

44.Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot and T. Roques-Carmes **159**, 49 (2018)

45.I.M. Kobasa, I.V. Kondratyeva, L.I. Odosiy, Y.V. Kropelnytska, Res. Chem. Intermed. 45, 1 (2019)

46.A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

47.I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)

48.C. Sun, P. He, G. Pan, Y. Miao, T. Zhang, L. Zhang, Res. Chem. Intermed. 44, 2607 (2018)

49.B. Soman, S. Challagulla, S. Payra, S. Dinda, S. Roy, Res. Chem. Intermed. 44, 2261 (2018)

50.S. Bao, J. Wan, B. Tian, J. Zhang, Res. Chem. Intermed. 44, 6137 (2018)

51.C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Chem. Commun. 47, 4400 (2011)

52.J. Yu, J. Lei, L. Wang, C. Guillard, J. Zhang, Y. Liu, M. Anpo, Res. Chem. Intermed. 45, 1 (2019)

53.Y. Chen, Q. Dong, L. Wang, X. Guo, S. Ai, H. Ding, Res. Chem. Intermed. 44, 7369 (2018)

54.W. Zhang, Y. Zhou, C. Dong, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. 44, 4797 (2018)

55.P. Verma, S.K. Samanta, Res. Chem. Intermed. 44, 1963 (2018)

56.J.C. Colmenares, R.S. Varma, P. Lisowski, Green Chem. 18, 5736 (2016)

57.B. Tang, H. Chen, H. Peng, Z. Wang, W. Huang, Nanomaterials 8, 105 (2018)

58.K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A General 489, 1 (2015)

59.K. Lee, H. Yoon, C. Ahn, J. Park, S. Jeon, Nanoscale 11, 7025 (2019)

60.M. Baca, W. Kukuka, K. Cendrowski, E. Mijowska, R.J. Kaleczuk, B. Zieliska, ChemSusChem 12, 612 (2019)

61.S. Cravanzola, S.M. Jain, F. Cesano, A. Damin, D. Scarano, RSC Adv. 5, 103255 (2015)

62.J. Shi, Chem. Rev. 113, 2139 (2013)

63.L.A. King, W. Zhao, M. Chhowalla, D.J. Riley, G. Eda, J. Mater. Chem. 1, 8935 (2013)

64.W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, Langmuir 20, 5865 (2004)

65.T. Umeyama, H. Imahori, Dalton Trans. 46, 15615 (2017)

66.E. Singh, H.S. Nalwa, Sci. Adv. Mater. 7, 1863 (2015)

67.V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photob. C Photochem. Rev. 25, 1 (2015)

68.I.A. Rusetskyi, M.O. Danilov, S.S. Fomanyuk, I.A. Slobodyanyuk, V.S. Vorobets, G.Y. Kolbasov, Res. Chem. Intermed. (2019).

69.W. Iqbal, B. Tian, M. Anpo, J. Zhang, Res. Chem. Intermed. 43, 5187 (2017)

70.H.Y. He, J.H. Lin, W. Fu, X.L. Wang, H. Wang, Q.S. Zeng, Q. Gu, Y.M. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, Adv. Energy Mater. **6**, 1600464 (2016)

71.W.J. Han, C. Zang, Z.Y. Huang, H. Zhang, L. Ren, X. Qi, J.X. Zhong, Int. J. Hydrogen Energy **39**, 19502 (2014)

72.B.A. Chen, E.Z. Liu, F. He, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Nano Energy 26, 541 (2016)

73.B.A. Chen, E.Z. Liu, T.T. Cao, F. He, C.S. Shi, C.N. He, L.Y. Ma, Q.Y. Li, J.J. Li, N.Q. Zhao, Nano Energy **33**, 247 (2017)

74.S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Front. Chem. 5, 91 (2017)

75.L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, En. Environm. Sci. **11**, 106 (2018)

76.K.H. Hu, X.G. Hu, Y.F. Xu, X.Z. Pan, React. Kinet. Mech. Catal. 100, 153 (2010)

77.Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano **6**, 74 (2012)

78.F. Cesano, D. Scarano, Coatings 8, 419 (2018)

79.Y. Lin, P. Ren, C. Wei, CrystEngComm **21**, 3439 (2019)

80. Y. Li, C. Cai, B. Sun, J. Chen, Semicond. Sci. Technol. 32, 105011 (2017)

81.L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527 (2016)

82.Y.J. Yuan, Z.J. Ye, H.W. Lu, B. Hu, Y.H. Li, D.Q. Chen, J.S. Zhong, Z.T. Yu, Z.G. Zou, ACS Catal. 6, 532 (2016)

83.S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Adv. Mater. 29, 1703614 (2017)

84.W. Gao, M. Wang, C. Ran, L. Li, Chem. Commun. 51, 1709 (2015)

85.S. Cravanzola, L. Muscuso, F. Cesano, G. Agostini, A. Damin, D. Scarano, A. Zecchina, Langmuir **31**, 5469 (2015)

86.R.D. Brown, R.A. Burton, P.M. Ku, ASLE Trans. 6, 12 (1963) 87.

87.T. Chinone, S. Okazaki, Nippon Kagaku Kaishi 10, 1327 (1978)

88.Y. Nosaka, H. Sasaki, K. Norimatsu, H. Miyama, Chem. Phys. Lett. 105, 456 (1984)

89.Y. Okamoto, A. Maezawa, T. Imanaka, J. Catal. 120, 29 (1989)

90.J. Ramirez, S. Fuentes, G. Díaz, M. Vrinat, M. Breysse, M. Lacroix, Appl. Catal. 52, 211 (1989)

91.K.C. Pratt, J.V. Sanders, V. Christov, J. Catal. 124, 416 (1990)

92.Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Nat. Mater. 8, 585 (2009)

93.G.S. Herman, Z. Dohnálek, N. Ruzycki, U. Diebold, J. Phys. Chem. B 107, 2788 (2003)

94.M. Setvin, B. Daniel, U. Aschauer, W. Hou, Y.-F. Li, M. Schmid, A. Selloni, U. Diebold, Phys. Chem. Chem. Phys. 16, 21524 (2014)

- 95.M. Primet, P. Pichat, M.V. Mathieu, J. Phys. Chem. 75, 1216 (1971)
- 96.A.A. Tsyganenko, V.N. Filimonov, J. Mol. Struct. 19, 579 (1973)
- 97.C. Morterra, A. Chiorino, F. Boccuzzi, E.Z. Fisicaro, Phys. Chem. Neue Folge 124, 211 (1982)
- 98.G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, Appl. Catal. 14, 245 (1985)
- 99.K. Hadjiivanov, A. Davydov, D. Klissurski, Kinet. Katal. 29, 161 (1988)
- 100.C. Morterra, J. Chem. Soc. Faraday Trans. 84, 1617 (1988)
- 101.K.I. Hadjiivanov, D.G. Klissurski, Chem. Soc. Rev. 25, 61 (1996)

102.S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 104, 9842 (2000)

103.B. Erdem, R.A. Hunsicker, G.W. Simmons, E. David Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)

104.K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17, 816 (2001)

105.P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75 (2008)

106. G. Martra, Appl. Cat. A Gen. 200, 275 (2000)

107. X.Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)

108. L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 116, 17008 (2012)

109. C. Deiana, E. Fois, S. Coluccia, G. Martra, J. Phys. Chem. C 114, 21531 (2010)

110. C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, P. Raybaud, J. Catal. 222, 152 (2004)

111. http://www.metecnetwork.eu/setnanometro-project/.

112. L. Mino, F. Pellegrino, S. Rades, J. Radnik, V.D. Hodoroaba, G. Spoto, V. Maurino, G. Martra, A.C.S. Appl, Nano Mater. 1, 5355 (2018)

113. M. Takeuchi, L. Bertinetti, G. Martra, S. Coluccia, M. Anpo, Appl. Catal. A. Gen. 307, 13 (2006)

114. M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, J. Phys. Chem. B 109, 15422 (2005)

115. L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C 118, 25016 (2014)

116. Y.J. Cao, S.J. Hu, M. Yu, S.S. Yan, M.C. Xu, Phys. Chem. Chem. Phys. 17, 23994 (2015)

117. I. Kamber, Res. Chem. Intermed. 23, 735 (1997)

118. A. Kubas, D. Berger, H. Oberhofer, D. Maganas, K. Reuter, F. Neese, J. Phys. Chem. Lett. 7, 4207 (2016)

119. Y.J. Cao, M. Yu, S.D. Qi, T.T. Wang, S.M. Huang, Z.F. Ren, S.S. Yan, S.J. Hu, M.C. Xu, Phys. Chem. Chem. Phys. **19**, 31267 (2017)

120. L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, J. Phys. Chem. B 106, 11240 (2002)

121. J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Chem. Eng. J. 170, 471 (2011)

122. L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 117, 11186 (2013)

123. F. Pellegrino, F. Sordello, L. Mino, C. Minero, V.D. Hodoroaba, G. Martra, V. Maurino, ACS Catal. 9, 6692 (2019)

124. Z. Xiong, Z. Lei, Y.Z. Li, L.C. Dong, Y.C. Zhao, J.Y. Zhang, J. Photochem. Photobiol. C-Photochem. Rev. 36, 24 (2018)

125. L.J. Liu, H.L. Zhao, J.M. Andino, Y. Li, ACS Catal. 2, 1817 (2012)

126. L.J. Liu, F. Gao, H.L. Zhao, Y. Li, Appl. Catal. B-Environ. 134, 349 (2013)

127. Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293 (2016)

128. L.J. Liu, C.Y. Zhao, J.T. Miller, Y. Li, J. Phys. Chem. C 121, 490 (2017)

129. M. Anpo, S.C. Moon, K. Chiba, G. Martra, S. Coluccia, Res. Chem. Intermed. 19, 495 (1993)

130. A. Zecchina, D. Scarano, S. Bordiga, G. Spoto, C. Lamberti, *Surface structures of oxides and halides and their relationships to catalytic properties* (Academic Press Inc, Cambridge, 2001)

131. J.C. Védrine, Res. Chem. Intermed. 41, 9387 (2015)

132. A.V. Ivanov, A.E. Koklin, E.B. Uvarova, L.M. Kustov, PCCP 5, 4718 (2003)

133. K.G. Pierce, M.A. Barteau, J. Phys. Chem. 98, 3882 (1994)

134. A.B. Sherrill, M.A. Barteau, J. Mol. Catal. A Chem. 184, 301 (2002)

135. A.H. Boonstra, C.A.H.A. Mutsaers, J. Phys. Chem. 79, 2025 (1975)

136. V. Rives-Arnau, N. Sheppard, JCS Faraday 76, 394 (1980)

137. V. Rives-Arnau, N. Sheppard, Soc. Faraday Trans. 77, 953 (1981)

138. S.M. Jain, J.J. Biedrzycki, V. Maurino, A. Zecchina, L. Mino, G. Spoto, J. Mater. Chem. A 2, 12247 (2014)

139. J.J. Biedrzycki, S. Livraghi, I. Corazzari, L. Mino, G. Spoto, E. Giamello, Langmuir **31**, 569 (2015)

140. H.Y.T. Chen, S. Livraghi, E. Giamello, G. Pacchioni, ChemPlusChem 81, 64 (2016)

141. H. Liu, Z. Chen, L. Zhang, D. Zhu, Q. Zhang, Y. Luo, X. Shao, PLoS ONE 122, 6388 (2018)

142. H. Liu, D. Zhu, H. Shi, X. Shao, ACS Omega 1, 168 (2016)

143. S. Cravanzola, M. Sarro, F. Cesano, P. Calza, D. Scarano, Nanomaterials 8(207), 201 (2018)

144. J. Jun Zhang, L. Zhang, X. Ma, Z. Ji, Appl. Surf. Sci. 430, 424 (2018)

145. X. Zhu, C. Yang, F. Xiao, J. Wang, X. Su, New J. Chem. 39, 683 (2015)

146. D. Scarano, F. Cesano, A. Zecchina, J. Phys. Chem. C 123, 7799 (2019)

147. W.D. Schneider, M. Heyde, H.J. Freund, Chem. Eur. J. 24, 2317 (2018) 148. H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 13, 3426 (2013)

149. F. Cesano, S. Bertarione, A. Piovano, M.M. Rahman, G. Agostini, E. Groppo, F. Bonino, C. Lamberti, D. Scarano, S. Bordiga, L. Montanari, L. Bonoldi, R. Millini, A. Zecchina, Catal. Sci. Technol. **1**, 123 (2011)

150. H. Liu, Y. Li, M. Xiang, H. Zeng, X. Shao, ACS Nano 13, 6083 (2019)

151. S. Cravanzola, F. Cesano, G. Magnacca, A. Zecchina, D. Scarano, RSC Adv. 6, 59001 (2016)