71 research outputs found

    Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos

    Get PDF
    The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|<0.02) Tsallis' distribution. We discuss concrete physical frameworks for calculating this deviation: the introduction of higher-order corrections to the diffusion and friction coefficients in the Fokker-Plank equation, the influence of the electric-microfield stochastic distribution on the particle dynamics, a velocity correlation function with long-time memory arising from the coupling of the collective and individual degrees of freedom. Finally, we study the effects of such deviations on stellar nuclear rates, on the solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.Comment: ReVTeX, 23 pages, 3 figures, to appear in the special issue (Nonextensive statistical mechanics and thermodynamics) of the Brazilian Journal of Physic

    Numerical modelling of the quantum-tail effect on fusion rates at low energy

    Full text link
    Results of numerical simulations of fusion rate d(d,p)t, for low-energy deuteron beam, colliding with deuterated metallic matrix (Raiola et al. Phys. Lett.B 547 (2002) 193 and Eur. Phys J. A 13 (2002) 377) confirm analytical estimate given in Coraddu et al. nucl-th/0401043, taking into account quantum tails in the momentum distribution function of target particles, and predict an enhanced astrophysical factor in the 1 keV region in qualitative agreement with experiments.Comment: 6 pages, without figure

    Deuterium burning in Jupiter interior

    Get PDF
    We show that moderate deviations from the Maxwell-Boltzmann energy distribution can increase deuterium reaction rates enough to contribute to the heating of Jupiter. These deviations are compatible with the violation of extensivity expected from temperature and density conditions inside Jupiter.Comment: 6 pages, use elsart + 1 encaspulated postscript figure. Submitted to Physica

    Weak insensitivity to initial conditions at the edge of chaos in the logistic map

    Full text link
    We extend existing studies of weakly sensitive points within the framework of Tsallis non-extensive thermodynamics to include weakly insensitive points at the edge of chaos. Analyzing tangent points of the logistic map we have verified that the generalized entropy with suitable entropic index q correctly describes the approach to the attractor.Comment: 6 pages, 3 figure

    The LUNA project: Status and first results

    Get PDF
    LUNA is a pilot project initially focused on the ^3He(^3He,^2p)^4He cross section measurement within the thermal energy region of the Sun (15–27 KeV). A compact high current 50 KV ion accelerator facility including a windowless gas target system, a beam calorimeter, and four detector telescopes has been built, tested, and installed underground at the Laboratori Nazionali del Gran Sasso. The sensitivity has been improved by more than four orders of magnitude, as compared to the previous experiment. In particular, thanks to the cosmic ray suppression, we could attain a background level of less than 1 event per week, a rate similar to the one expected from ^3He(^3He,^2p)^4He at the lower edge of the Sun thermal energy region

    Fusion reactions in plasmas as probe of the high-momentum tail of particle distributions

    No full text
    In fusion reactions, the Coulomb barrier selects particles from the high-momentum part of the distribution. Therefore, small variations of the high-momentum tail of the velocity distribution can produce strong effects on fusion rates. In plasmas several potential mechanisms exist that can produce deviations from the standard Maxwell-Boltzmann distribution. Quantum broadening of the energy-momentum dispersion relation of the plasma quasi-particles modifies the high-momentum tail and could explain the fusion-rate enhancement observed in low-energy nuclear reaction experiments
    • …
    corecore