4,840 research outputs found

    Analysis and Experimental Tests of a High-Performance Evacuated Tubular Collector

    Get PDF
    A high-performance collector based on the use of all-glass, evacuated tubular collector elements is described and analyzed, and supporting experimental data presented. The collector operated with excellent efficiency at temperatures high enough to drive existing air conditioning units, and showed good performance under diffuse light and low insolation conditions. Collector efficiency was insensitive to operating temperature, ambient temperature, and wind speed. In addition, air, as well as liquid, can be used as the heat transfer fluid, with no significant performance penalty. While the equations governing the useful energy produced can be cast in a form similar to that for flat plate collectors, several important parameters were unique in a number of respects. The loss coefficient was unusually low, while the flow factor and effective insolation were unusually high

    Engineering compliance and worker resistance in UK further education: The creation of the Stepford lecturer

    Get PDF
    PurposeThe purpose of this paper is to explore control and resistance in the UK further education (FE) sector by examining senior college managers’ attempts to engineer culture change and analysing lecturers’ resistance to such measures.Design/methodology/approachData were derived from interviews with managers and lecturers in two English FE colleges and the analysis of college documents. Interview data were analysed thematically using NVIVO software.FindingsIt was found that college managers sought to build consent to change among lecturers based on values derived from “business‐like” views. Culture change initiatives were framed within the language of empowerment but lecturers’ experiences of change led them to feel disempowered and cynical as managers imposed their view of what lecturers should be doing and how they should behave. This attempt to gain control of the lecturers’ labour process invoked the “Stepford” lecturer metaphor used in the paper. Paradoxically, as managers sought to create lecturers who were less resistant to change, individualised resistance intensified as managers’ attempts to win hearts and minds conspicuously failed.Research limitations/implicationsThe paper draws on data from two case study colleges and this limits the generalisability of its findings.Practical implicationsThe paper provides a critical perspective on the received wisdom of investing in stylised change programmes that promise to win staff over to change but which may alienate those they purport to empower and ultimately lead to degenerative workplace relations.Originality/valueThe paper offers new insights into culture change from the juxtaposed, polarised views of senior managers and lecturers, while highlighting the negative consequences of imposing change initiatives from above.</jats:sec

    Decision-level adaptation in motion perception

    Get PDF
    Prolonged exposure to visual stimuli causes a bias in observers’ responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer’s criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants’ task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participant’s task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-makin

    A stable range description of the space of link maps

    Full text link
    We study the space of link maps, which are smooth maps from the disjoint union of manifolds P and Q to a manifold N such that the images of P and Q are disjoint. We give a range of dimensions, interpreted as the connectivity of a certain map, in which the cobordism class of the "linking manifold" is enough to distinguish the homotopy class of one link map from another.Comment: 10 page

    New measurements of cosmic infrared background fluctuations from early epochs

    Get PDF
    Cosmic infrared background fluctuations may contain measurable contribution from objects inaccessible to current telescopic studies, such as the first stars and other luminous objects in the first Gyr of the Universe's evolution. In an attempt to uncover this contribution we have analyzed the GOODS data obtained with the Spitzer IRAC instrument, which are deeper and cover larger scales than the Spitzer data we have previously analyzed. Here we report these new measurements of the cosmic infrared background (CIB) fluctuations remaining after removing cosmic sources to fainter levels than before. The remaining anisotropies on scales > 0.5 arcmin have a significant clustering component with a low shot-noise contribution. We show that these fluctuations cannot be accounted for by instrumental effects, nor by the Solar system and Galactic foreground emissions and must arise from extragalactic sources.Comment: Ap.J.Letters, in pres

    Clustering of DIRBE Light and IR Background

    Get PDF
    We outline a new method for estimating the cosmic infrared background using the spatial and spectral correlation properties of infrared maps. The cosmic infrared background from galaxies should have a minimum fluctuation of the order of 10\% on angular scales of the order of 1\deg. We show that a linear combination of maps at different wavelengths can greatly reduce the fluctuations produced by foreground stars, while not eliminating the fluctuations of the background from high redshift galaxies. The method is potentially very powerful, especially at wavelengths where the foreground is bright but smooth.Comment: 7 pages postcript, talk at "Unveiling the cosmic infrared background" workshop, College Park, M

    Cosmic Infrared Background Fluctuations and Zodiacal Light

    Full text link
    We have performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution, or from IRAC observations of high latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field, at low ecliptic latitude where the zodiacal light intensity varies by factors of ∌2\sim2 over the range of solar elongations at which the field can be observed. We find that the white noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100"\gtrsim100") where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large scale power in the infrared background is not being caused by the zodiacal light.Comment: 17 pp. Accepted for publication in the Ap

    Demonstrating the negligible contribution of optical ACS/HST galaxies to source-subtracted cosmic infrared background fluctuations in deep IRAC/Spitzer images

    Full text link
    We study the possible contribution of optical galaxies detected with the {\it Hubble} ACS instrument to the near-IR cosmic infrared (CIB) fluctuations in deep {\it Spitzer} images. The {\it Spitzer} data used in this analysis are obtained in the course of the GOODS project from which we select four independent 10â€Č×10â€Č10^\prime\times10^\prime regions observed at both 3.6 and 4.5 \um. ACS source catalogs for all of these areas are used to construct maps containing only their emissions in the ACS B,V,i,zB, V, i, z-bands. We find that deep Spitzer data exhibit CIB fluctuations remaining after removal of foreground galaxies of a very different clustering pattern at both 3.6 and 4.5 \um than the ACS galaxies could contribute. We also find that there are very good correlations between the ACS galaxies and the {\it removed} galaxies in the Spitzer maps, but practically no correlations remain with the residual Spitzer maps used to identify the CIB fluctuations. These contributions become negligible on larger scales used to probe the CIB fluctuations arising from clustering. This means that the ACS galaxies cannot contribute to the large-scale CIB fluctuations found in the residual Spitzer data. The absence of their contributions also means that the CIB fluctuations arise at z\gsim 7.5 as the Lyman break of their sources must be redshifted past the longest ACS band, or the fluctuations have to originate in the more local but extremely low luminosity galaxies.Comment: Ap.J.Letters, in press. Minor revisions to mathc the accepted versio

    New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications

    Get PDF
    We extend previous measurements of cosmic infrared background (CIB) fluctuations to ~ 1 deg using new data from the Spitzer Extended Deep Survey. Two fields, with depths of ~12 hr/pixel over 3 epochs, are analyzed at 3.6 and 4.5 mic. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of AB mag ~ 25, as indicated by the level of the remaining shot noise. The maps were then Fourier-transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 mic power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to > 10 times those of known galaxy populations on angular scales out to < 1 deg. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model (LCDM) at epochs coinciding with the first stars era.Comment: ApJ, to be publishe
    • 

    corecore