113 research outputs found

    Aerosol classification for Comodoro Rivadavia AERONET station during 2015

    Get PDF
    La ciudad de Comodoro Rivadavia, en la provincia de Chubut, se encuentra a orillas del mar Argentino, en la zona central de la Cuenca de San Jorge. Su clima es de tipo árido con pocas precipitaciones. En este trabajo, se analizan estadísticamente los datos del espesor óptico de los aerosoles de la estación de red AERONET/NASA que se encuentra instalado en la estación de monitoreo (45,792o S; 67,463o O) del Aeropuerto Internacional General Enrique Mosconi y se correlacionan los resultados con la dirección del viento que afectan a la ciudad para el año 2015. La misma es afectada mayormente por vientos del cuadrante Oeste provenientes desde la cordillera, y por vientos del cuadrante Este desde el mar. Estas dos direcciones del viento provocan transporte de dos tipos de aerosoles: los marinos y el polvo. Para ejemplificar las características de los aerosoles movilizados por estas dos direcciones del viento, se estudian las mediciones del fotómetro solar para los días 21 y 22 de enero de 2015. Se determinan para esos días las características ópticas de los aerosoles en suspensión en la atmósfera.The city of Comodoro Rivadavia, in the province of Chubut, is located on the shores of the Argentinean Sea, in the central zone of the San Jorge Basin. Its climate is arid with little rainfall. In this work, the aerosol optical data of the aerosols of the AERONET/NASA network station that is installed in the monitoring station (45,792o S; 67,463o W) of the General Enrique Mosconi International Airport are analyzed statistically and correlated the wind direction results that affect the city by 2015. It is mostly affected by winds from the West quadrant from the mountain range, and winds from the East quadrant from the sea. These two wind directions cause transport of two types of aerosols: marine and dust. To exemplify the characteristics of the aerosols mobilized by these two wind directions, the measurements of the solar photometer are studied for January 21th and 22th, 2015. The optical characteristics of the suspended aerosols in the atmosphere are determined for those daysFil: Otero, Lidia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad de la Defensa Nacional.; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Martorella, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Pereyra, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Brusca de Giorgio, Silvina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Fierro, Victor. Universidad de la Defensa Nacional.; ArgentinaFil: Franchi, G.. Universidad de la Defensa Nacional.; ArgentinaFil: Herrera, Milagros Estefanía. Universidad de la Defensa Nacional.; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bali, Juan Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Vilar, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Tecnológica Nacional; Argentina. Universidad Nacional de la Patagonia Austral; ArgentinaFil: Raponi, Marcelo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Quel, Eduardo Jaime. Universidad de la Defensa Nacional.; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    the prevention of chronic diseases through ehealth a practical overview

    Get PDF
    Disease prevention is an umbrella term embracing individual-based or population-based interventions aimed at preventing the manifestation of diseases (primary prevention), reducing the impact of a disease that has arisen (secondary prevention), or mitigating the impact of an ongoing illness (tertiary prevention). Digital health has the potential to improve prevention of chronic diseases. Its application ranges from effective mHealth weight-loss intervention to prevent or delay the onset of diabetes in overweight adults to the cost-effective intervention on the provision of mental-health care via mobile-based or Internet-based programs to reduce the incidence or the severity of anxiety. The present contribution focuses on the effectiveness of eHealth preventive interventions and on the role of digital health in improving health promotion and disease prevention. We also give a practical overview on how eHealth interventions have been effectively implemented, developed, and delivered for the primary, secondary, and tertiary prevention of chronic diseases

    Knowledge-based verification of concatenative programming patterns inspired by natural language for resource-constrained embedded devices

    Get PDF
    We propose a methodology to verify applications developed following programming patterns inspired by natural language that interact with physical environments and run on resource-constrained interconnected devices. Natural language patterns allow for the reduction of intermediate abstraction layers to map physical domain concepts into executable code avoiding the recourse to ontologies, which would need to be shared, kept up to date, and synchronized across a set of devices. Moreover, the computational paradigm we use for effective distributed execution of symbolic code on resource-constrained devices encourages the adoption of such patterns. The methodology is supported by a rule-based system that permits runtime verification of Software Under Test (SUT) on board the target devices through automated oracle and test case generation. Moreover, verification extends from syntactic and semantic checks to the evaluation of the effects of SUT execution on target hardware. Additionally, by exploiting rules tying sensors and actuators to physical quantities, the effects of code execution on the physical environment can be verified. The system is also able to build test code to highlight software issues that may arise during repeated SUT execution on the target hardware

    Three‐dimensional ISAR imaging: a review

    No full text

    A parametric model-based approach for Atmospheric Phase Screen removal in Ground-Based Interferometric SAR

    No full text
    The atmosphere affects the propagation of radar signals by provoking unwanted signal phase changes. In interferometric applications, such as coherent change detection and displacement measurements, this effect may significantly degrade the system performances. Moreover, atmosphere-induced phase changes are both time- and space-variant and, therefore, they are not easy to be removed. This paper proposes a novel method to remove atmospheric effects by using a parametric model of the refractive index, which is derived as an extension of the ITU-R model. The proposed algorithm has been tested on real data acquired by using a GB-SAR system in conjunction with data collected by a weather station. Data have been acquired continuously for three consecutive days, approximatively every 5 minutes. Results have shown how the proposed method can effectively remove atmospheric effects and restore the signal phase
    corecore