4,376 research outputs found
Evaluation of the impact of solder die attach versus epoxy die attach in a state of the art power package
Subject of this paper is the thermal investigation of epoxy (EDA) and solder
(SDA) die attaches by a comparison of an ASIC with multiple heat sources in
different package assemblies. Static and transient thermal measurements and
simulations were performed to investigate the thermal behavior of two samples
in a state of the art QFP power package differing only in the die attach
material (EDA and SDA).Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Giant dipole resonance with exact treatment of thermal fluctuations
The shape fluctuations due to thermal effects in the giant dipole resonance
(GDR) observables are calculated using the exact free energies evaluated at
fixed spin and temperature. The results obtained are compared with Landau
theory calculations done by parameterizing the free energy. The Landau theory
is found to be insufficient when the shell effects are dominating.Comment: 5 pages, 2 figure
B-Nodes: A Proposed New Technique for Database Design and Implementation
There exist a wide range of methods that can be used for the analysis and design of IT systems. However a survey of a wide range of methods and a detailed analysis of one structured method indicated the lack of a simple method for modeling hardware. The ORACLE database provides detailed guidelines regarding the minimum platform to run the database and how to derive table spaces (system, user, applications, rollback etc) size of shared pool buffer, Redo log buffer pool etc.that can be used to define hard disc capacity. The system can then be optimised. However little guidance is given regarding the performance of other devices (microprocessor, RAM, bus structures etc). This paper evaluates the new B-Node modeling technique as a possible standard technique in structured systems analysis and design for evaluating hardware performance
Applicability of shape parameterizations for giant dipole resonance in warm and rapidly rotating nuclei
We investigate how well the shape parameterizations are applicable for
studying the giant dipole resonance (GDR) in nuclei, in the low temperature
and/or high spin regime. The shape fluctuations due to thermal effects in the
GDR observables are calculated using the actual free energies evaluated at
fixed spin and temperature. The results obtained are compared with Landau
theory calculations done by parameterizing the free energy. We exemplify that
the Landau theory could be inadequate where shell effects are dominating. This
discrepancy at low temperatures and high spins are well reflected in GDR
observables and hence insists on exact calculations in such cases.Comment: 10 pages, 2 figure
Resilience concepts in psychiatry demonstrated with bipolar disorder
Background: The term resilience describes stress–response patterns of subjects across scientific disciplines. In ecology, advances have been made to clearly distinguish resilience definitions based on underlying mechanistic assumptions. Engineering resilience (rebound) is used for describing the ability of subjects to recover from adverse conditions (disturbances), and is the rate of recovery. In contrast, the ecological resilience definition considers a systemic change: when complex systems (including humans) respond to disturbances by reorganizing into a new regime (stable state) where structural and functional aspects have fundamentally changed relative to the prior regime. In this context, resilience is an emergent property of complex systems. We argue that both resilience definitions and uses are appropriate in psychology and psychiatry, but although the differences are subtle, the implications and uses are profoundly different.
Methods: We borrow from the field of ecology to discuss resilience concepts in the mental health sciences.
Results: In psychology and psychiatry, the prevailing view of resilience is adaptation to, coping with, and recovery (engineering resilience) from adverse social and environmental conditions. Ecological resilience may be useful for describing vulnerability, onset, and the irreversibility patterns of mental disorders. We discuss this in the context of bipolar disorder.
Conclusion: Rebound, adaptation, and coping are processes that are subsumed within the broader systemic organization of humans, from which ecological resilience emanates. Discerning resilience concepts in psychology and psychiatry has potential for a mechanistically appropriate contextualization of mental disorders at large. This might contribute to a refinement of theory and contextualize clinical practice within the broader systemic functioning of mental illnesses
On the structure of subsets of an orderable group with some small doubling properties
The aim of this paper is to present a complete description of the structure
of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is
non-abelian
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis
Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations
- …