758 research outputs found
Excitation and emission spectra of rubidium in rare-gas thin-films
To understand the optical properties of atoms in solid state matrices, the
absorption, excitation and emission spectra of rubidium doped thin-films of
argon, krypton and xenon were investigated in detail. A two-dimensional
spectral analysis extends earlier reports on the excitation and emission
properties of rubidium in rare-gas hosts. We found that the doped crystals of
krypton and xenon exhibit a simple absorption-emission relation, whereas
rubidium in argon showed more complicated spectral structures. Our sample
preparation employed in the present work yielded different results for the Ar
crystal, but our peak positions were consistent with the prediction based on
the linear extrapolation of Xe and Kr data. We also observed a bleaching
behavior in rubidium excitation spectra, which suggests a population transfer
from one to another spectral feature due to hole-burning. The observed optical
response implies that rubidium in rare-gas thin-films is detectable with
extremely high sensitivity, possibly down to a single atom level, in low
concentration samples.Comment: 7 pages, 5 figure
New Panoramic View of CO and 1.1 mm Continuum Emission in the Orion A Molecular Cloud. I. Survey Overview and Possible External Triggers of Star Formation
We present new, wide and deep images in the 1.1 mm continuum and the
CO (=1-0) emission toward the northern part of the Orion A Giant
Molecular Cloud (Orion-A GMC). The 1.1 mm data were taken with the AzTEC camera
mounted on the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope
in Chile, and the CO (=1-0) data were with the 25 beam receiver
(BEARS) on the NRO 45 m telescope in the On-The-Fly (OTF) mode. The present
AzTEC observations are the widest (\timeform{1.D7}
\timeform{2.D3}, corresponding to 12 pc 17 pc) and the
highest-sensitivity (9 mJy beam) 1.1 mm dust-continuum imaging of
the Orion-A GMC with an effective spatial resolution of 40\arcsec. The
CO (=1-0) image was taken over the northern \timeform{1D.2}
\times\timeform{1D.2} (corresponding 9 pc 9 pc) area with a
sensitivity of 0.93 K in , a velocity resolution of 1.0 km
s, and an effective spatial resolution of 21\arcsec. With these data,
together with the MSX 8 m, Spitzer 24 m and the 2MASS data, we have
investigated the detailed structure and kinematics of molecular gas associated
with the Orion-A GMC and have found evidence for interactions between molecular
clouds and the external forces that may trigger star formation. Two types of
possible triggers were revealed; 1) Collision of the diffuse gas on the cloud
surface, particularly at the eastern side of the OMC-2/3 region, and 2)
Irradiation of UV on the pre-existing filaments and dense molecular cloud
cores. Our wide-field and high-sensitivity imaging have provided the first
comprehensive view of the potential sites of triggered star formation in the
Orion-A GMC.Comment: 32 pages, 20 figures, accepted for publication in PAS
Parabolic gratings enhance the X-ray sensitivity of Talbot interferograms
In grating-based X-ray Talbot interferometry, the wave nature of X-ray radiation is exploited to generate phase contrast images of objects that do not generate sufficient contrast in conventional X-ray imaging relying on X-ray absorption. The phase sensitivity of this interferometric technique is proportional to the interferometer length and inversely proportional to the period of gratings. However, the limited spatial coherency of X-rays limits the maximum interferometer length, and the ability to obtain smaller-period gratings is limited by the manufacturing process. Here, we propose a new optical configuration that employs a combination of a converging parabolic micro-lens array and a diverging micro-lens array, instead of a binary phase grating. Without changing the grating period or the interferometer length, the phase signal is enhanced because the beam deflection by a sample is amplified through the array of converging-diverging micro-lens pairs. We demonstrate that the differential phase signal detected by our proposed set-up is twice that of a Talbot interferometer, using the same binary absorption grating, and with the same overall inter-grating distance
The properties and polarization of the H2O and CH3OH maser environment of NGC7538-IRS1
NGC7538 is a complex massive star-forming region. The region is composed of
several radio continuum sources, one of which is IRS1, a high-mass protostar,
from which a 0.3 pc molecular bipolar outflow was detected. Several maser
species have been detected around IRS1. The CH3OH masers have been suggested to
trace a Keplerian-disk, while the H2O masers are almost aligned to the outflow.
More recent results suggested that the region hosts a torus and potentially a
disk, but with a different inclination than the Keplerian-disk that is supposed
to be traced by the CH3OH masers. Tracing the magnetic field close to
protostars is fundamental for determining the orientation of the disk/torus.
Recent studies showed that during the protostellar phase of high-mass star
formation the magnetic field is oriented along the outflows and around or on
the surfaces of the disk/torus. The observations of polarized maser emissions
at milliarcsecond resolution can make a crucial contribution to understanding
the orientation of the magnetic field and, consequently, the orientation of the
disk/torus in NGC7538-IRS1. The NRAO Very Long Baseline Array was used to
measure the linear polarization and the Zeeman-splitting of the 22GHz H2O
masers toward NGC7538-IRS1. The European VLBI Network and the MERLIN telescopes
were used to measure the linear polarization and the Zeeman-splitting of the
6.7GHz CH3OH masers toward the same region. We detected 17 H2O masers and 49
CH3OH masers at high angular resolution. We detected linear polarization
emission toward two H2O masers and toward twenty CH3OH masers. The CH3OH
masers, most of which only show a core structure, seem to trace rotating and
potentially infalling gas in the inner part of a torus. Significant
Zeeman-splitting was measured in three CH3OH masers. [...] We also propose a
new description of the structure of the NGC7538-IRS1 maser region.Comment: 13 pages, 9 figures, 4 Tables, accepted by Astronomy & Astrophysic
- …