9,552 research outputs found

    Regular quantum graphs

    Full text link
    We introduce the concept of regular quantum graphs and construct connected quantum graphs with discrete symmetries. The method is based on a decomposition of the quantum propagator in terms of permutation matrices which control the way incoming and outgoing channels at vertex scattering processes are connected. Symmetry properties of the quantum graph as well as its spectral statistics depend on the particular choice of permutation matrices, also called connectivity matrices, and can now be easily controlled. The method may find applications in the study of quantum random walks networks and may also prove to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure

    Quantum search algorithms on a regular lattice

    Full text link
    Quantum algorithms for searching one or more marked items on a d-dimensional lattice provide an extension of Grover's search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level-splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behaviour for the search time and the localisation probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions

    Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Get PDF
    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined

    Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Get PDF
    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice

    Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    Get PDF
    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Classical Coulomb three-body problem in collinear eZe configuration

    Full text link
    Classical dynamics of two-electron atom and ions H−^{-}, He, Li+^{+}, Be2+^{2+},... in collinear eZe configuration is investigated. It is revealed that the mass ratio ξ\xi between necleus and electron plays an important role for dynamical behaviour of these systems. With the aid of analytical tool and numeircal computation, it is shown that thanks to large mass ratio ξ\xi, classical dynamics of these systems is fully chaotic, probably hyperbolic. Experimental manifestation of this finding is also proposed.Comment: Largely rewritten. 21 pages. All figures are available in http://ace.phys.h.kyoto-u.ac.jp/~sano/3-body/index.htm

    Passenger-Oriented Enhanced Metrics

    Get PDF
    We report on a project building the first European ATM simulation combining flight and passenger trip data. New propagation-centric and passenger-centric performance metrics are described. The new metrics will be compared with existing, classical metrics, to compare their respective intelligibility, sensitivity and consistency. The trade-offs in performance across the metrics under a range of flight and passenger prioritisation scenarios will be examined. The corresponding regulatory and socio-political contexts are described. Complexity science techniques demonstrate the need to extend flight-centric network representations to include the passenger perspective

    Delay propagation – new metrics, new insights

    Get PDF
    Network delay propagation is intimately linked with the challenges of managing passenger itineraries and corresponding connections. Airline decision-making governing these processes is driven by operational and regulatory factors. Using the first European network simulation model with explicit passenger itineraries and full delay cost estimations, we explore these factors through various flight and passenger prioritisation rules, assessing the performance impacts. Delay propagation is further characterised under the different prioritisation rules using complexity science techniques such as percolation theory and network attack. The relative effects of randomised and targeted disruption are compared

    New perspectives for air transport performance

    Get PDF
    The average delays of flights and passengers are not the same. The air transport industry is lacking passenger-centric metrics; its reporting is flight-centric. We report on the first European network simulation model with explicit passenger itineraries and full delay cost estimations. Trade-offs in performance are assessed using passenger-centric and flight-centric metrics, under a range of novel flight and passenger prioritisation scenarios. The need for passenger-centric metrics is established. Delay propagation is characterised under the scenarios using, inter alia, Granger causality techniques
    • …
    corecore