115 research outputs found

    Linguistic measures of chemical diversity and the "keywords" of molecular collections

    Get PDF
    Computerized linguistic analyses have proven of immense value in comparing and searching through large text collections ("corpora"), including those deposited on the Internet-indeed, it would nowadays be hard to imagine browsing the Web without, for instance, search algorithms extracting most appropriate keywords from documents. This paper describes how such corpus-linguistic concepts can be extended to chemistry based on characteristic "chemical words" that span more than traditional functional groups and, instead, look at common structural fragments molecules share. Using these words, it is possible to quantify the diversity of chemical collections/databases in new ways and to define molecular "keywords" by which such collections are best characterized and annotated

    Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification

    Get PDF
    INTRODUCTION: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS: Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS: CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION: These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812

    Promiscuous Aggregate-Based Inhibitors Promote Enzyme Unfolding

    Get PDF
    One of the leading sources of false positives in early drug discovery is the formation of organic small molecule aggregates, which inhibit enzymes nonspecifically at micromolar concentrations in aqueous solution. The molecular basis for this widespread problem remains hazy. To investigate the mechanism of inhibition at a molecular level, we determined changes in solvent accessibility that occur when an enzyme binds to an aggregate using hydrogen-deuterium exchange mass spectrometry. For AmpC beta-lactamase, binding to aggregates of the small molecule rottlerin increased the deuterium exchange of all 10 reproducibly detectable peptides, which covered 41% of the sequence of beta-lactamase. This suggested a global increase in proton accessibility upon aggregate binding, consistent with denaturation. We then investigated whether enzyme-aggregate complexes were more susceptible to proteolysis than uninhibited enzyme. For five aggregators, trypsin degradation of beta-lactamase increased substantially when beta-lactamase was inhibited by aggregates, whereas uninhibited enzyme was generally stable to digestion. Combined, these results suggest that the mechanism of action of aggregate-based inhibitors proceeds via partial protein unfolding when bound to an aggregate particle

    Complementarity Between a Docking and a High-Throughput Screen in Discovering New Cruzain Inhibitors†

    Get PDF
    Virtual and high-throughput screens (HTS) should have complementary strengths and weaknesses, but studies that prospectively and comprehensively compare them are rare. We undertook a parallel docking and HTS screen of 197861 compounds against cruzain, a thiol protease target for Chagas disease, looking for reversible, competitive inhibitors. On workup, 99 % of the hits were eliminated as false positives, yielding 146 well-behaved, competitive ligands. These fell into five chemotypes: two were prioritized by scoring among the top 0.1 % of the docking-ranked library, two were prioritized by behavior in the HTS and by clustering, and one chemotype was prioritized by both approaches. Determination of an inhibitor/cruzain crystal structure and comparison of the high-scoring docking hits to experiment illuminated the origins of docking false-negatives and false-positives. Prioritizing molecules that are both predicted by docking and are HTS-active yields well-behaved molecules, relatively unobscured by the false-positives to which both techniques are individually prone

    Complement in the pathogenesis of Alzheimer's disease

    Get PDF
    The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer’s disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer’s disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain

    Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads

    Get PDF
    The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Automated Reporter Quantification In Vivo: High-Throughput Screening Method for Reporter-Based Assays in Zebrafish

    Get PDF
    Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current “high-content” (e.g., confocal imaging-based) whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1) Rapid; achieving true HTS capacities (i.e., >50,000 units per day), 2) Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5), and 3) Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1) Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors), 2) Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3) Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current “high-content” whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform
    corecore