2,898 research outputs found
Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments
Fixed-target unpolarized Drell-Yan experiments often feature an acceptance
depending on the polar angle of the lepton tracks in the laboratory frame.
Typically leptons are detected in a defined angular range, with a dead zone in
the forward region. If the cutoffs imposed by the angular acceptance are
independent of the azimuth, at first sight they do not appear dangerous for a
measurement of the cos(2\phi)-asymmetry, relevant because of its association
with the violation of the Lam-Tung rule and with the Boer-Mulders function. On
the contrary, direct simulations show that up to 10 percent asymmetries are
produced by these cutoffs. These artificial asymmetries present qualitative
features that allow them to mimic the physical ones. They introduce some
model-dependence in the measurements of the cos(2\phi)-asymmetry, since a
precise reconstruction of the acceptance in the Collins-Soper frame requires a
Monte Carlo simulation, that in turn requires some detailed physical input to
generate event distributions. Although experiments in the eighties seem to have
been aware of this problem, the possibility of using the Boer-Mulders function
as an input parameter in the extraction of Transversity has much increased the
requirements of precision on this measurement. Our simulations show that the
safest approach to these measurements is a strong cutoff on the Collins-Soper
polar angle. This reduces statistics, but does not necessarily decrease the
precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure
A model to explain angular distributions of and decays into and
BESIII data show a particular angular distribution for the decay of the
and mesons into the hyperons
and . More in details the angular distribution of
the decay exhibits an opposite trend
with respect to that of the other three channels: , and
. We define a model to explain the
origin of this phenomenon.Comment: 6 pages, 7 figures, to be published in Chinese Physics
DISTO data on Kpp
The data from the DISTO Collaboration on the exclusive pp -> p K+ Lambda
production acquired at T_p = 2.85 GeV have been re-analysed in order to search
for a deeply bound K- pp (= X) state, to be formed in the binary process pp ->
K+ X. The preliminary spectra of the DeltaM_{K+} missing-mass and of the M_{p
Lambda} invariant-mass show, for large transverse-momenta of protons and kaons,
a distinct broad peak with a mass M_X = 2265 +- 2 MeV/c^2 and a width Gamma_X =
118 +- 8 MeV/c^2.Comment: 8 pages, 4 figures. Talk presented at the "10th International
Conference on Hypernuclear and Strange Particle Physics" (HYP-X), Tokai,
Ibaraki, Japan, September 14th-18th, 2009. To appear in the proceeding
Indication of a deeply bound compact K-pp state formed in the pp -> p Lambda K+ reaction at 2.85 GeV
We have analyzed data of the DISTO experiment on the exclusive pp -> p Lambda
K+ reaction at 2.85 GeV to search for a strongly bound compact K-pp (= X) state
to be formed in the pp -> K+ + X reaction. The observed spectra of the K+
missing-mass and the p Lambda invariant-mass with high transverse momenta of p
and K+ revealed a broad distinct peak with a mass M_X = 2265 +- 2 (stat) +- 5
(syst) MeV/c2 and a width Gamma_X = 118 +- 8 (stat) +- 10 (syst) MeV.Comment: 4 pages, 4 figure
A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP
The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector
that collects data provided by the collision in the Beijing Electron Positron
Collider II (BEPCII), hosted at the Institute of High Energy Physics of
Beijing. Since the beginning of its operation, BESIII has collected the world
largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the
luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC
decreases its efficiency in the first layers up to 35% with respect to the
value in 2014. Since BESIII has to take data up to 2022 with the chance to
continue up to 2027, the Italian collaboration proposed to replace the inner
part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM).
The CGEM-IT project will deploy several new features and innovation with
respect the other current GEM based detector: the {\mu}TPC and analog readout,
with time and charge measurements will allow to reach the 130 {\mu}m spatial
resolution in 1 T magnetic field requested by the BESIII collaboration. In this
proceeding, an update of the status of the project will be presented, with a
particular focus on the results with planar and cylindrical prototypes with
test beams data. These results are beyond the state of the art for GEM
technology in magnetic field
K Meson Production in the Proton-Proton Reaction at 3.67 GeV/c
The total cross section of the reaction has been determined
for proton--proton reactions with . This represents the
first cross section measurement of the channel near
threshold, and is equivalent to the inclusive cross section at
this beam momentum. The cross section determined at this beam momentum is about
a factor 20 lower than that for inclusive meson production at
the same CM energy above the corresponding threshold. This large difference in
the and meson inclusive production cross sections in proton-proton
reactions is in strong contrast to cross sections measured in sub-threshold
heavy ion collisions, which are similar in magnitude at the same energy per
nucleon below the respective thresholds.Comment: 12 pages, 3 figures Phys. Lett. B in prin
- …