10,996 research outputs found

    KPZ modes in dd-dimensional directed polymers

    Full text link
    We define a stochastic lattice model for a fluctuating directed polymer in d2d\geq 2 dimensions. This model can be alternatively interpreted as a fluctuating random path in 2 dimensions, or a one-dimensional asymmetric simple exclusion process with d1d-1 conserved species of particles. The deterministic large dynamics of the directed polymer are shown to be given by a system of coupled Kardar-Parisi-Zhang (KPZ) equations and diffusion equations. Using non-linear fluctuating hydrodynamics and mode coupling theory we argue that stationary fluctuations in any dimension dd can only be of KPZ type or diffusive. The modes are pure in the sense that there are only subleading couplings to other modes, thus excluding the occurrence of modified KPZ-fluctuations or L\'evy-type fluctuations which are common for more than one conservation law. The mode-coupling matrices are shown to satisfy the so-called trilinear condition.Comment: 22 pages, 2 figure

    Feasibility of high-voltage systems for a very long drift in liquid argon TPCs

    Full text link
    Designs of high-voltage (HV) systems for creating a drift electric field in liquid argon TPCs are reviewed. In ongoing experiments systems capable of approx. 100 kV are realised for a drift field of 0.5-1 kV/cm over a length of up to 1.5 m. Two of them having different approaches are presented: (1) the ICARUS-T600 detector having a system consisting of an external power supply, HV feedthroughs and resistive voltage degraders and (2) the ArDM-1t detector having a cryogenic Greinacher HV multiplier inside the liquid argon volume. For a giant scale liquid argon TPC, a system providing 2 MV may be required to attain a drift length of approx. 20 m. Feasibility of such a system is evaluated by extrapolating the existing designs.Comment: 8 pages, 13 figures, to appear in Proc. of 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba (Japan), March 201

    Enhanced Anandamide Plasma Levels in Patients with Complex Regional Pain Syndrome following Traumatic Injury: A Preliminary Report

    Get PDF
    The complex regional pain syndrome (CRPS) is a disabling neuropathic pain condition that may develop following injuries of the extremities. The pathogenesis of this syndrome is not clear; however, it includes complex interactions between the nervous and the immune system resulting in chronic inflammation, pain and trophic changes. This interaction may be mediated by chronic stress which is thought to activate the endogenous cannabinoid (endocannabinoid) system (ECS). We conducted an open, prospective, comparative clinical study to determine plasma level of the endocannabinoid anandamide by high-performance liquid chromatography and a tandem mass spectrometry system in 10 patients with CRPS type I versus 10 age- and sex-matched healthy controls. As compared to healthy controls, CRPS patients showed significantly higher plasma concentrations of anandamide. These results indicate that the peripheral ECS is activated in CRPS. Further studies are warranted to evaluate the role of the ECS in the limitation of inflammation and pain. Copyright (C) 2009 S. Karger AG, Base

    Infinite-Randomness Fixed Points for Chains of Non-Abelian Quasiparticles

    Full text link
    One-dimensional chains of non-Abelian quasiparticles described by SU(2)kSU(2)_k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to kk \to \infty). For k=2k=2 this phase provides a random singlet description of the infinite randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size LL in these phases scales as SLlnd3log2LS_L \simeq \frac{\ln d}{3} \log_2 L for large LL, where dd is the quantum dimension of the particles.Comment: 4 pages, 4 figure

    The Drinfel'd Double and Twisting in Stringy Orbifold Theory

    Full text link
    This paper exposes the fundamental role that the Drinfel'd double \dkg of the group ring of a finite group GG and its twists \dbkg, \beta \in Z^3(G,\uk) as defined by Dijkgraaf--Pasquier--Roche play in stringy orbifold theories and their twistings. The results pertain to three different aspects of the theory. First, we show that GG--Frobenius algebras arising in global orbifold cohomology or K-theory are most naturally defined as elements in the braided category of \dkg--modules. Secondly, we obtain a geometric realization of the Drinfel'd double as the global orbifold KK--theory of global quotient given by the inertia variety of a point with a GG action on the one hand and more stunningly a geometric realization of its representation ring in the braided category sense as the full KK--theory of the stack [pt/G][pt/G]. Finally, we show how one can use the co-cycles β\beta above to twist a) the global orbifold KK--theory of the inertia of a global quotient and more importantly b) the stacky KK--theory of a global quotient [X/G][X/G]. This corresponds to twistings with a special type of 2--gerbe.Comment: 35 pages, no figure

    The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    Full text link
    Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body / smoothed particle hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars, since this process enhances the central dark matter content. Even when the entire disk is tidally stripped away, the nucleus stays intact and can remain dark matter dominated even after severe stripping. Total galaxy disruption beyond the nuclei only occurs on certain orbits and depends on the amount of dissipation during nuclei formation. By comparing the total disruption of CDM subhaloes in a cluster potential we demonstrate that this model also leads to the observed spatial distribution of UCDs which can be tested in more detail with larger data sets.Comment: 8 pages, 8 figures, final version accepted for publication in MNRA

    Die solitäre abszedierende Osteomyelitis des Kieferköpfchens: Eine Rarität

    Get PDF
    Zusammenfassung: Fall: Es wird über den seltenen Fall einer solitären abszedierenden, sekundär chronischen Osteomyelitis des linken Processus condylaris berichtet. Aus dem Abszessmaterial wurde der Keim Haemophilus aphrophilus isoliert. Therapeutisch erfolgte eine Resektion des Processus condylaris mit Sofortrekonstruktion des Kondylus mithilfe einer Kopfendoprothese. Diskussion: Mögliche Ursachen für diese seltene Lokalisation einer sekundär chronischen Osteomyelitis werden anhand der Literatur aufgearbeitet und dem vorliegenden Fall gegenübergestellt. Schlussfolgerung: Als mögliche Ursache wird eine Keiminokulation durch die Nadel bei einer Lokalanästhesie, eine bakterielle Kontamination während der Zahnextraktion oder eine hämatogene Aussaat durch den Extraktionsvorgang angenomme
    corecore