4 Ked. ゆって Virology

Volume 123 1982

EDITORS

W. K. Joklik, EDITOR-IN-CHIEF G. E. Bruening R. Haselkorn D. W. Kingsbury A. J. Levine P. K. Vogt

P. W. Choppin R. W. Schlesinger

ASSOCIATE EDITORS

S. Adhya L. A. Ball C. Basilico T. Ben-Porat K. I. Berns D. H. L. Bishop J. M. Bishop L. W. Black M. A. Bratt J. M. Coffin J. S. Colter S. Dales R. Eisenman F. A. Eiserling A. J. Faras B. N. Fields S. J. Flint R. I. B. Francki E. P. Geiduschek R. B. Luftig R. F. Gesteland R. M. Goodman A. Granoff K. A. Harrap R. Hull T. Hunter J. N. Ihle A. O. Jackson J. E. Johnson J. M. Kaper K. S. Kim R. M. Krug M. Lai R. A. Lamb R. A. Lazzarini L. Levintow H. F. Lodish

R. C. Miller, Jr. T. J. Morris B. Moss
F. A. Murphy
P. E. Neiman
J. F. Obijeski P. Palese M. W. Pons F. Rapp L. B. Rothman-Denes J. Sambrook C. E. Samuel A. Scheid M. J. Schlesinger E. M. Scolnick J. R. Scott

O. P. Sehgal T. A. Shalla P. A. Sharp J. G. Shaw T. Shenk P. E. Spear V. Stollar M. D. Summers M. M. Susskind R. H. Symons P. Tegtmeyer H. E. Varmus I. M. Verma E. Wimmer J. Youngner M. Zaitlin N. D. Zinder

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London

Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto

Contents of Volume 123

NUMBER 1, NOVEMBER 1982

E. C. HASCOET, G. H. J. PRETORIUS, AND W. F. COETZEE. Proteus mirabilis Phage 5006M: Restriction	1
Maps of Genome in Aeration to reading rackaging	1
Adenovirus-Transformed Cells and Their Sensitivity to Killing by Syngeneic Natural Killer Cells	8
ELS VAN LEERDAM, CHRISTIAAN KARREMAN, AND PIETER VAN DE PUTTE. Ner, a Cro-like Function of Bacteriophage Mu	19
BERNARD REVET AND ETIENNE DELAIN. The Drosophila X Virus Contains a $1-\mu M$ Double-Stranded RNA Circularized by a 67-kd Terminal Protein: High-Resolution Denaturation Mapping of Its Genome	29
atocarcinoma Cell Lines	45
D. BROWN, C. L. JONES, B. A. BROWN, AND E. EHRENFELD. Translation of Capped and Uncapped VSV mRNAs in the Presence of Initiation Factors from Poliovirus-Infected Cells	60
DAVID C. JACKSON AND R. G. WEBSTER. A Topographic Map of the Enzyme Active Center and Antigenic Sites on the Neuraminidase of Influenza Virus A/Tokyo/3/67 (H2N2)	69
thesis but Competent for Transformation of Cultured Rat and Simian Cells	78
Lentinus edodes	93
BRIGITTE ROSENWIRTH AND HANS J. EGGERS. Biochemistry and Pathogenicity of Echovirus 9. I. Char- acterization of the Virus Particles of Strains Barty and Hill	102
Simplex Virus Temperature-Sensitive Mutants Which Overproduce Immediate Early Polypeptides	113
of Action of 2-Deoxy-D-glucose: Normally Glycosylated Proteins Are Not Strictly Required for Herpes Simplex Virus Attachment But Increase Viral Penetration and Infectivity	123
ROBERT H. BASSIN, SANDRA RUSCETTI, IQBAL ALI, DANIEL K. HAAPALA, AND ALAN REIN. Normal DBA/ 2 Mouse Cells Synthesize a Glycoprotein Which Interferes with MCF Virus Infection	139
RICHARD K. GAILLARD, JR., AND WOLFGANG K. JOKLIK. Quantitation of the Relatedness of Reovirus Serotypes 1, 2, and 3 at the Gene Level	152
JOSEPH MERREGAERT AND STUART A. AARONSON. Characterization of Inducible Type-C RNA Viruses of Mouse Strains from Different Geographic Areas	165
ERIC RASSART AND PAUL JOLICOEUR. Restriction Analysis and Molecular Cloning of Endogenous Murine Leukemia Virus-Specific DNA Sequences of the Mouse Genome	175
HENRY L. NIMAN AND JOHN H. ELDER. Structural Analysis of Rauscher Virus Gp70 Using Monoclonal Antibodies: Sites of Antigenicity and P15(E) Linkage	187
SHORT COMMUNICATIONS	
JONATHAN A. ATWATER AND CHARLES E. SAMUEL. Mechanism of Interferon Action: Interferon In- hibits the Synthesis of Viral Proteins and Induces Protein P ₁ Phosphorylation in Both Ade- nylate Cyclase-Deficient and cAMP-Dependent Protein Kinase-Deficient Variants of Mouse	
Lymphoma Cells WAYNED, LANGACTER AND JOIN P. SUNDREDC, Characterization of Papillomovinusce Icolated from	206
Cutaneous Fibromas of White-Tailed Deer and Mule Deer	212
Virion DNA Is Methylated in and around the <i>Eco</i> RI-J Fragment	217
Polyhedrosis Virus Genome: Location of Late Cytoplasmic mRNA HEINZ-JURGEN THIEL, FRANK WEILAND, RUDOLF HAFENRICHTER, THOMAS J. MATTHEWS, AND KENT	222
J. WEINHOLD. Intracellular Cleavage of an SSV Coded gag-Related Protein	229
Author Index for Volume 123, Number 1	235

ROBERT A. LAMB AND CHING-JUH LAI. Spliced and Unspliced Messenger RNAs Synthesized from Cloned Influenza Virus M DNA in an SV40 Vector: Expression of the Influenza Virus Membrane Protein	
(M ₁)	237
KONSTANTIN G. KOUSOULAS, STANLEY PERSON, AND THOMAS C. HOLLAND. Herpes Simplex Virus Type 1 Cell Fusion Occurs in the Presence of Ammonium Chloride-Inhibited Glycoproteins	257
E. ANNE DARRAGH AND RICHARD D. MACDONALD. A Host Range Restriction in Infectious Pancreatic Necrosis Virus Maps to the Large RNA Segment and Involves Virus Attachment to the Cell Surface	264
MURCHER, GISELA WENGER, AND HANS J. GROSS. Terminal Sequences of Sindols Virus-Specific Nucleia Aside, Idantiti in Molandas Sunthasizad in Variabata and Insaat Calls and Characteristic	
Properties of the Replicative Form RNA	273
LAPIT I COPTON DATION COLL AND ROBERT H SYMONS Highly Purified Cucumber Mosaic Virus-	210
Induced RNA-Dependent RNA Polymerase Does Not Contain Any of the Full Length Translation Products of the Genomic RNAs	284
STEVEN PALMIERI HARTMIT BEIG AND THOMAS GRAF Isolation and Characterization of Four New	201
Temperature-Sensitive Mutants of Avian Ervthroblastosis Virus (AEV)	296
GRAHAM E. WILCOX AND RICHARD W. COMPANS. Cell Fusion Induced by Nelson Bay Virus	312
F. F. FANNIN AND J. G. SHAW. Infection of Tobacco Leaf Epidermal Protoplasts with Tobacco Mosaic	•
Virus	323
M. S. GALINSKI, KC. CHOW, G. F. ROHRMANN, G. D. PEARSON, AND G. S. BEAUDREAU, Size Determination	
of Orguia pseudotsugata Cytoplasmic Polyhedrosis Virus Genomic RNA	328
MARY K. YORK AND MARVIN STODOLSKY. Characterization of PlargF Derivatives from Escherichia coli	
K12 Transduction. III. P1Cm13argF Derivatives	336
MARK R. HALL, NIKOU AGHILI, CLAIRE HALL, JESSE MARTINEZ, AND STEPHEN ST. JEOR. Chromosomal	
Organization of the Herpes Simplex Virus Type 2 Genome	344
OSCAR REYES. Characterization of the Recombination Function of Coliphage $\phi 80$ as Analogous to the	
recE Recombinative Pathway of Escherichia coli	357
PAUL L. KAPLAN AND BRAD OZANNE. Polyoma Virus-Transformed Cells Produce Transforming Growth	
Factor(s) and Grow in Serum-Free Medium	372
P. COULON AND D. CONTAMINE. Role of the Drosophila Genome in Sigma Virus Multiplication. II. Host	
Spectrum Variants among the haP Mutants	381
GALE E. SMITH AND MAX D. SUMMERS. DNA Homology among Subgroup A, B, and C Baculoviruses	393
VIRGINIA M. HILL AND DONALD F. SUMMERS. Synthesis of VSV RNPs in Vitro by Cellular VSV RNPs	
Added to Uninfected HeLa Cell Extracts: VSV Protein Requirements for Replication in Vitro	407
E. S. ZALMANZON, R. A. VINKELE, L. V. GRIGORYEVA, AND R. L. TURETSKAYA. A Study of Rat Embryo	
Cells Transformed in Vitro by the Bovine Adenovirus Type 3 (BAV-3) DNA before and after a	400
Passage in the Host	420
WERNER STIBBE AND WOLFRAM H. GERLICH. Variable Protein Composition of Hepatitis B Surface An-	196
Suppr Consultations	400
CLAVE LILEN. Excharichia coli duga Cana Product Is Required for a Normal Rate of Phage TA	
DNA Synthesis	443
FACULE H SARVAR AND SOMAN L. GUPTA On the Inhibition of Interferon Action by Inhibitors of	440
Fatty Acid Cyclosygenase	448
DAVID P. BOERSMA, FARANGIS SALEH, KIYOTO NAKAMURA, AND RICHARD W. COMPANS. Structure	
and Glycosylation of Tacaribe Viral Glycoproteins	452
PAUL ANDERSON AND JAN VILČEK. Synthesis and Biological Characterization of a Covalent Con-	
jugate between Interferon and Ricin Toxin B Chain	457
B. BLONDEL, R. CRAINIC, O. AKACEM, P. BRUNEAU, M. GIRARD, AND F. HORODNICEANU. Evidence for	
Common, Intertypic Antigenic Determinants on Poliovirus Capsid Polypeptides	461
ANNE D. JOHNSON, ALICE BARKAN, AND JANET E. MERTZ. Nucleotide Sequence Analysis of the	
Recombinant Joints in 16 Naturally Arising Deletion Mutants of Simian Virus 40	464
DENNIS E. HRUBY, DONNA B. MILLER, AND L. ANDREW BALL. Synthesis of Vaccinia Virus Thymidine	
Kinase in Microinjected Xenopus Oocytes	470
PHILIP SERWER, GISELE A. GREENHAW, AND JERRY L. ALLEN. Concatemers in a Rapidly Sedimenting,	
Replicating Bacteriophage T7 DNA	474
MICHAEL DAVID, GIAN DOMENICO BORASIO, AND GABRIEL KAUFMANN. T4 Bacteriophage-Coded Poly-	
nucleotide Kinase and RNA Ligase Are Involved in Host tRNA Alteration or Repair	480
AUTHOR INDEX FOR VOLUME 123	484
CUMULATIVE AUTHOR INDEX FOR VOLUMES 116-123	480
CUMULATIVE SUBJECT INDEX FOR VOLUMES 110-123	493

T4 Bacteriophage-Coded Polynucleotide Kinase and RNA Ligase Are Involved in Host tRNA Alteration or Repair

MICHAEL DAVID, GIAN DOMENICO BORASIO, AND GABRIEL KAUFMANN¹

Biochemistry Department, Weizmann Institute of Science, Rehovot 76100, Israel

Received August 10, 1982; accepted September 7, 1982

T4-induced polynucleotide kinase, RNA ligase, and a tRNA-specific endonuclease were previously implicated in host tRNA breakage and reunion. To examine this hypothesis we followed the fate of host tRNAs in T4-infected *Escherichia coli* CTr5x, a strain restricting phage mutants lacking polynucleotide kinase (pnk^-) or RNA ligase (rli^-) . Two host tRNA species which were cleaved in the anticodon loops were further processed in the wild type but not in the mutant infections, indicating that polynucleotide kinase and RNA ligase are involved in the alteration or repair of these *E. coli* CTr5× tRNA species.

T4-coded polynucleotide kinase (1) and RNA ligase (2) have been thoroughly characterized in vitro (3-5) but their roles in phage physiology still need to be determined. We have previously proposed that both enzymes participate in reactions of host tRNA breakage and reunion, required for phage development in certain host strains (6, 7). By following the fate of host tRNA molecules in Escherichia coli CTr5 imes(8), a host strain restrictive to T4 mutants deficient in 3'-phosphatase-polynucleotide kinase (8-10) or RNA ligase (11), we demonstrate here the involvement of these T4 functions in the alteration or repair of host tRNA species.

We have recently shown that *E. coli* CTr5× differs from other *E. coli* strains which are permissive to T4 polynucleotide kinase (pnk^{-}) or RNA ligase deficient (rli^{-}) mutants in the cleavage pattern of host tRNAs following infection (12). Thus, while only leucine tRNA₁ is cleaved in T4-infected *E. coli* B (13, 14) and in other permissive hosts, two additional tRNA species are cleaved during infection of *E. coli* CTr5×. Contrary to leucine tRNA, which is cleaved in the extra-arm (14), the CTr5×-specific cleavages occur next to the

anticodon and are mediated by a separate T4-induced tRNA-specific endonuclease (12). In the present experiment we compared host tRNA cleavage patterns during infection of E. coli $CTr5 \times$ with either wildtype, pnk^{-} (8, 9), or rli^{-} (15) strains of T4. Figure 1 depicts the kinetics of host tRNA fragment appearance and disappearance during these infections. Both the wildtype and the mutant infections gave rise to six tRNA fragment bands. Bands I and IV originated from leucine $tRNA_1$ and are common to all T4-infected E. coli strains tested (12-14). Fragments (II and VI) and (III and V) correspond, respectively, to the 3' and 5' fragments of two $CTr5 \times$ -specific tRNA species which are cleaved in their anticodon loop (12). In all these infections, leucine $tRNA_1$ fragments appeared and disappeared with a similar time course. However, a difference was noted between the wild-type and the mutant infections with respect to the behavior of the $CTr5 \times$ specific fragments. Thus, during wild-type infection the CTr5×-specific fragment bands reached maximal intensity between 4 and 6 min postinfection and then began to fade, having almost completely disappeared at 22 min postinfection. By contrast, in the pnk^- and rli^- infections these fragments appeared somewhat later than in the wild-type infection and persisted (II + VI) or seemed to have been only

¹ To whom all correspondence should be addressed: c/o Dr. R. G. Martin, NIAMDD, Bldg. 2, Rm. 214, Bethesda, Md. 20205.

С

FIG. 1. *E. coli* CTr5× tRNA cleavage patterns during infection with T4 wild type (a), pnk⁻ (b), or rli⁻ (c) phage strains. *E. coli* CTr5× cells were pulse labeled with ³²P, chased with unlabeled P_i and then infected with the indicated phage strain. Culture aliquots were withdrawn before infection or at the indicated infection times, and RNA was extracted from them and separated by denaturing gel electrophoresis as previously described (12). The mutant strains employed were: *pse*T2 (polynucleotide kinase deficient, Ref. (9)) and *am* M69 (RNA ligase deficient, Refs. (15, 16).

slightly modified (III + V) at later infection times. Fragments II and VI remained virtually unchanged, both in quantity and electrophoretic mobility until 22 min in the pnk^- and rli^- infections. Fragment III did not change in the pnk^{-} infection while in the rli^- system it appeared to have been partially converted into a slightly faster migrating species designated III* (15- and 22-min lanes) which at 22 min constituted about one-half of the original band III. With both mutants, Band V completely disappeared within 15 min postinfection with a parallel appearance of a new band migrating somewhat faster than band VI and designated V*.

The failure of pnk^- and rli^- mutants to process further the $CTr5 \times$ -specific tRNA fragments which disappeared late in the wild-type infection indicates that polynucleotide kinase and RNA ligase are normally involved in the alteration or repair of the corresponding tRNA species. Although the reactions which cause the "disappearance" of the CTr5×-specific tRNA fragments are not known presently, it seems reasonable to assume, based on the in vitro properties of polynucleotide kinase (3) and RNA ligase (1, 5), that these fragments undergo phosphoryl rearrangement and perhaps additional modifications prior to their ligation. The slight changes which seemed to occur with fragments III and V during the mutant infections (Fig. 1) may reflect such additional steps, presumably leading to an altered tRNA structure following the ligation. Alternatively, these changes could be due to abnormal degradation of the fragments whose processing was arrested by the mutation. The results also indicate that polynucleotide kinase and RNA ligase are not related to the removal of the leucine $tRNA_1$ fragments since this process was not affected by pnk⁻ and *rli*⁻ mutations.

Given the existence of a pathway which includes the T4-induced anticodon nuclease (12), polynucleotide kinase, RNA ligase, and perhaps additional processing enzymes, what do these host tRNA alterations, or breakage and subsequent repair, contribute to phage development and why are they needed in *E. coli* CTr5× and not in other host strains permissive to pnk^{-} and rli^- mutants? One explanation is that this putative pathway provides a suppressor tRNA species required later in T4 gene expression. Such a suppressor tRNA species may already exist in most T4 host strains but probably not in E. coli $CTr5 \times$ (7, 9, 10) in which this function could be provided by the putative T4-induced alteration pathway. Supporting this view is the fact that E. coli $CTr5 \times$ can be converted into a host permissive to a pnk^{-} deletion mutant by transformation with an amber suppressor function (10, 11). Alternatively, polynucleotide kinase and RNA ligase may restore the tRNAs cleaved earlier by the anticodon nuclease without further change. We have recently isolated, among pseudorevertants of pnk^- mutants able to grow on E. coli $CTr5\times$, a phage lacking the anticodon nuclease activity. This double mutant forms small plaques on E. coli $CTr5 \times$ but wild-type sized plaques on E. coli B, providing further evidence for a functional connection between the anticodon nuclease, polynucleotide kinase, and RNA ligase and suggesting that the alteration of host tRNAs, if it occurs, is not an "essential" function for T4.

ACKNOWLEDGMENTS

We thank L. Snyder for phage and bacterial strains. G. K. was an incumbent of the Alan Dixon Career Development Chair.

REFERENCES

- RICHARDSON, C. C., Proc. Nat. Acad. Sci. USA 54, 158-165 (1965).
- SILBER, R., MALATHI, V. G., and HURWITZ, J., *Proc. Nat. Acad. Sci. USA* 69, 3009-3013 (1972).
- KLEPPE, K., and LILLEHAUG, J. R., Advan. Enzymol. 63, 245–275 (1977).
- HIGGINS, N. P., and COZZARELLI, N. R., In "Methods in Enzymology" (R. Wu, ed.), Vol. 68, pp. 50-71. Academic Press, New York, 1979.
- GUMPORT, R. I., and UHLENBECK, O. C., In "Gene Amplification and Analysis" (J. G. Chirikjian and T. S. Papas, eds.), Vol. 2, pp. 1–44. Elsevier North-Holland, New York, 1981.
- KAUFMANN, G., and KALLENBACH, N. R., Nature (London) 254, 452-454 (1975).
- 7. DAVID, M., VEKSTEIN, R., and KAUFMANN, G.,

Proc. Nat. Acad. Sci. USA 76, 5430-5434 (1979).

- DEPEW, R. E., and COZZARELLI, N. R., J. Virol. 13, 888–897 (1974).
- CAMERON, V., and UHLENBEK, O. C., Biochemistry 16, 5120-5126 (1977).
- SIROTKIN, K., COOLEY, W., RUNNELS, J., and SNYDER, L. R., J. Mol. Biol. 123, 221–233 (1978).
- 11. RUNNELS, J. M., SOLTIS, D., HEY, T., and SNY-DER, L., J. Mol. Biol. 154, 273-286 (1982).

- 12. DAVID, M., BORASIO, G. D., and KAUFMANN, G. Proc. Nat. Acad. Sci. USA, in press.
- KANO-SUEOKA, T., and SUEOKA, N., J. Mol. Biol. 37, 475–491 (1968).
- 14. YUDELEVICH, A., J. Mol. Biol. 60, 21-29 (1972).
- SNOPEK, T. J., WOOD, W. B., CONLEY, M. E., CHEN, P., and COZZARELLI, N. R., Proc. Nat. Acad. Sci. USA 74, 3355-3359 (1978).
- WOOD, W. B., and HENNINGER, M., J. Mol. Biol. 39, 603-618 (1969).