5,502 research outputs found

    Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Get PDF
    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS)

    Stem/progenitor cells in fetuses and newborns: overview of immunohistochemical markers

    Get PDF
    Microanatomy of the vast majority of human organs at birth is characterized by marked differences as compared to adult organs, regarding their architecture and the cell types detectable at histology. In preterm neonates, these differences are even more evident, due to the lower level of organ maturation and to ongoing cell differentiation. One of the most remarkable finding in preterm tissues is the presence of huge amounts of stem/progenitor cells in multiple organs, including kidney, brain, heart, adrenals, and lungs. In other organs, such as liver, the completely different burden of cell types in preterm infants is mainly related to the different function of the liver during gestation, mainly focused on hematopoiesis, a function that is taken by bone marrow after birth. Our preliminary studies showed that the antigens expressed by stem/progenitors differ significantly from one organ to the next. Moreover, within each developing human tissue, reactivity for different stem cell markers also changes during gestation, according with the multiple differentiation steps encountered by each progenitor during development. A better knowledge of stem/progenitor cells of preterms will allow neonatologists to boost preterm organ maturation, favoring the differentiation of the multiple cells types that characterize each organ in at term neonates

    Carotid plaque imaging profiling in subjects with risk factors (diabetes and hypertension)

    Get PDF
    Carotid artery stenosis (CAS) due to the presence of atherosclerotic plaque (AP) is a frequent medical condition and a known risk factor for stroke, and it is also known from literature that several risk factors promote the AP development, in particular aging, smoke, male sex, hypertension, hyperlipidemia, smoke, diabetes type 1 and 2, and genetic factors. The study of carotid atherosclerosis is continuously evolving: even if the strategies of treatment still depends mainly on the degree of stenosis (DoS) determined by the plaque, in the last years the attention has moved to the study of the plaque components in order to identify the so called “vulnerable” plaque: features like the fibrous cap status and thickness, the volume of the lipid-rich necrotic core and the presence of intraplaque hemorrhage (IPH) are risk factors for plaque rupture, that can be studied with modern imaging techniques. The aim of this review is to give a general overview of the principle histological and imaging features of the subcomponent of carotid AP (CAP), focalizing in particular on the features of CAP of patients affected by hypertension and diabetes (in particular type 2 diabetes mellitus)

    Thymosin beta-4 prenatal administration improves fetal development and halts side effects due to preterm delivery

    Get PDF
    Objective: Thymosin beta 4 (TB4) is the most abundant member of the beta-thymosin family in humans. The main physiological role of TB4 is the regulation of actin polymerization. TB4 is also involved in angiogenesis, cell survival, cell migration and fetal development. The aim of this study was to evaluate the activity of TB4 as a fetal growth promoter when administered during pregnancy. Materials and methods: Our protocols have been carried out in full conformity with the rules and guidelines expected for this kind of trial. 10 pregnant mice received the same injection regimen. Only 6 of these 10 are part of this experiment because they were pregnant. At 10:00 a.m. on day E14 and E17 of gestation mice were weighed and treated with an intraperitoneal injection of TB4 (Regene RX, Rockville, MD, USA; 6 mg/kg in PBS). Results: The mothers treated with TB4 for two days precisely E14 and E17, showed a higher cranio-caudal length when compared to control newborns. At histology, maternal TB4 treatment was associated with more advanced development of lungs, heart, kidney, cerebral cortex and notochord. Conclusions: Our study shows that TB4 administration during gestation may act as a powerful fetal growth promoter, by accelerating the development of newborn organs and tissues

    Plasma cells in the carotid plaque: occurrence and significance

    Get PDF
    OBJECTIVE: Atherosclerosis is one of the leading causes of disability and mortality worldwide. Inflammation, including monocytes, T and B cells, plays a key role in its pathogenesis. Our purpose was to evaluate plasma cells’ presence in a large series of carotid artery plaques and the clinical association. PATIENTS AND METHODS: Forty-eight consecutive patients treated with carotid endarterectomy were retrospectively analyzed to assess plasma cells’ presence inside the plaque. A semiquantitative grading score was applied, ranging from absence, scattered, clusters of 5-10, and sheets of >10 plasma cells. Plasma cell’s location, as intraplaque, subendothelial or peri-adventitial, was also defined. RESULTS: In 75% of plaques analyzed, plasma cells were detected: scattered in 63.9%, in clusters in 22.2%, and in sheets in 13.9% of cases. In all cases, plasma cells were observed only inside the plaque. In 13.9% and in 11.1% of cases, plasma cells showed, respectively, a concomitant subendothelial or peri-adventitial distribution. In 5.6% of plaques, there was a simultaneous distribution in subendothelial, peri-adventitial layer, and intraplaque. Association between the presence of symptoms and plasma cells infiltrate was found. CONCLUSIONS: Our results suggest that plasma cells could be a key parameter linked to plaque instability. Some types of configurations are significantly associated with the occurrence of cerebrovascular symptoms
    • …
    corecore