698 research outputs found
Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12
The dielectric properties of CaCu3Ti4O12, a material showing colossal values
of the dielectric constant, were investigated in a broad temperature and
frequency range extending up to 1.3 GHz. A detailed equivalent circuit analysis
of the results and two crucial experiments, employing different types of
contacts and varying sample thickness, provide clear evidence that the
apparently high values of the dielectric constant in CaCu3Ti4O12 are
non-intrinsic and due to electrode polarization effects. The intrinsic
properties of CaCu3Ti4O12 are characterized by charge transport via hopping of
localized charge carriers and a relatively high dielectric constant of the
order of 100.Comment: 4 pages, 4 figure
Thermodynamic evidence of fractionalized excitations in {\alpha}-RuCl3
Fractionalized excitations are of considerable interest in recent
condensed-matter physics. Fractionalization of the spin degrees of freedom into
localized and itinerant Majorana fermions are predicted for the Kitaev spin
liquid, an exactly solvable model with bond-dependent interactions on a
two-dimensional honeycomb lattice. As function of temperature, theory predicts
a characteristic two-peak structure of the heat capacity as fingerprint of
these excitations. Here we report on detailed heat-capacity experiments as
function of temperature and magnetic field in high-quality single crystals of
{\alpha}-RuCl3 and undertook considerable efforts to determine the exact phonon
background. We measured single-crystalline RhCl3 as non-magnetic reference and
performed ab-initio calculations of the phonon density of states for both
compounds. These ab-initio calculations document that the intrinsic phonon
contribution to the heat capacity cannot be obtained by a simple rescaling of
the nonmagnetic reference using differences in the atomic masses. Sizable
renormalization is required even for non-magnetic RhCl3 with its minute
difference from the title compound. In {\alpha}-RuCl3 in zero magnetic field,
excess heat capacity exists at temperatures well above the onset of magnetic
order. In external magnetic fields far beyond quantum criticality, when
long-range magnetic order is fully suppressed, the excess heat capacity
exhibits the characteristic two-peak structure. In zero field, the lower peak
just appears at temperatures around the onset of magnetic order and seems to be
connected with canonical spin degrees of freedom. At higher fields, beyond the
critical field, this peak is shifted to 10 K. The high-temperature peak located
around 50 K is hardly influenced by external magnetic fields, carries the
predicted amount of entropy, R/2 ln2, and may resemble remnants of Kitaev
physics
Broadband dielectric response of CaCu3Ti4O12: From dc to the electronic transition regime
We report on phonon properties and electronic transitions in CaCu3Ti4O12, a
material which reveals a colossal dielectric constant at room temperature
without any ferroelectric transition. The results of far- and mid-infrared
measurements are compared to those obtained by broadband dielectric and
millimeter-wave spectroscopy on the same single crystal. The unusual
temperature dependence of phonon eigenfrequencies, dampings and ionic plasma
frequencies of low lying phonon modes are analyzed and discussed in detail.
Electronic excitations below 4 eV are identified as transitions between full
and empty hybridized oxygen-copper bands and between oxygen-copper and
unoccupied Ti 3d bands. The unusually small band gap determined from the
dc-conductivity (~200 meV) compares well with the optical results.Comment: 7 pages, 8 figure
320g Ionization-Heat Cryogenic Detector for Dark Matter Search in the EDELWEISS Experiment
The EDELWEISS experiment used in 2001 a 320g heat-and-ionization cryogenic Ge
detector operated in a low-background environment in the Laboratoire Souterrain
de Modane for direct WIMP detection. This detector presents an increase of more
than 4 times the mass of previous detectors. Calibrations of this detector are
used to determine its energy resolution and fiducial volume, and to optimize
the detector design for the 1kg phase of the EDELWEISS-I experiment. Analysis
of the calibrations and characteristics of a first series of 320g-detectors are
presented.Comment: 4 pages, 3 figure
Glassy Dynamics Under Superhigh Pressure
Nearly all glass-forming liquids feature, along with the structural
alpha-relaxation process, a faster secondary process (beta-relaxation), whose
nature belongs to the great mysteries of glass physics. However, for some of
these liquids, no well-pronounced secondary relaxation is observed. A prominent
example is the archetypical glass-forming liquid glycerol. In the present work,
by performing dielectric spectroscopy under superhigh pressures up to 6 GPa, we
show that in glycerol a significant secondary relaxation peak appears in the
dielectric loss at P > 3 GPa. We identify this beta-relaxation to be of
Johari-Goldstein type and discuss its relation to the excess wing. We provide
evidence for a smooth but significant increase of glass-transition temperature
and fragility on increasing pressure.Comment: 5 pages, 5 figures, final version with minor changes according to
referee demands and corrected Figs 1 and
Dielectric behavior of Copper Tantalum Oxide
A thorough investigation of the dielectric properties of Cu2Ta4O12, a
material crystallizing in a pseudo-cubic, perovskite-derived structure is
presented. We measured the dielectric constant and conductivity of single
crystals in an exceptionally broad frequency range up to GHz frequencies and at
temperatures from 25 - 500 K. The detected dielectric constant is unusually
high (reaching values up to 105) and almost constant in a broad frequency and
temperature range. Cu2Ta4O12 possesses a crystal structure similar to
CaCu3Ti4O12, the compound for which such an unusually high dielectric constant
was first observed. An analysis of the results using a simple equivalent
circuit and measurements with different types of contact revealed that
extrinsic interfacial polarization effects, derived from surface barrier
capacitors are the origin of the observed giant dielectric constants. The
intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively
high) dielectric constant in the order of 100 and by charge transport via
hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr
Diluted Random Fields in Mixed Cyanide Crystals
A percolation argument and a dilute compressible random field Ising model are
used to present a simple model for mixed cyanide crystals. The model reproduces
quantitatively several features of the phase diagrams altough some crude
approximations are made. In particular critical thresholds x_c at which
ferroelastic first order transitions disappear, are calculated. Moreover,
transitions are found to remain first order down to x_c for all mixtures except
for bromine, for which the transition becomes continuous. All the results are
in full agreement with experimental data.Comment: 8 pages, late
Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12
We present dielectric measurements of the colossal dielectric constant
material CaCu3Ti4O12 extending up to 1.3 GHz also covering so far only rarely
investigated single crystalline samples. Special emphasis is put on the second
relaxation reported in several works on polycrystals, which we detect also in
single crystals. For polycrystalline samples we provide a recipe to achieve
values of the dielectric constant as high as in single crystals.Comment: 3 pages, 3 figure
Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers
Glasses are ubiquitous in daily life and technology. However the microscopic
mechanisms generating this state of matter remain subject to debate: Glasses
are considered either as merely hyper-viscous liquids or as resulting from a
genuine thermodynamic phase transition towards a rigid state. We show that
third- and fifth-order susceptibilities provide a definite answer to this
longstanding controversy. Performing the corresponding high-precision nonlinear
dielectric experiments for supercooled glycerol and propylene carbonate, we
find strong support for theories based upon thermodynamic amorphous order.
Moreover, when lowering temperature, we find that the growing transient domains
are compact - that is their fractal dimension d_f = 3. The glass transition may
thus represent a class of critical phenomena different from canonical
second-order phase transitions for which d_f < 3.Comment: 9 pages, 3 figure
Evidence for a Ru Kondo Lattice in LaCuRuO
Rare -electron derived heavy-fermion properties of the solid-solution
series LaCuRuTiO were studied for by
resistivity, susceptibility, specific-heat measurements, and magnetic-resonance
techniques. The pure ruthenate () is a heavy-fermion metal characterized
by a resistivity proportional to at low temperatures . The coherent
Kondo lattice formed by the localized Ru 4 electrons is screened by the
conduction electrons leading to strongly enhanced effective electron masses. By
increasing titanium substitution the Kondo lattice becomes diluted resulting in
single-ion Kondo properties like in the paradigm -based heavy-fermion
compound CeLaCuSi [M. Ocko {\em et al.}, Phys. Rev. B
\textbf{64}, 195106 (2001)]. In LaCuRuTiO the
heavy-fermion behavior finally breaks down on crossing the metal-to-insulator
transition close to .Comment: 9 pages, 8 figure
- …