603 research outputs found
Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material
Simulating temporal evolution of pressure in two-phase flow in porous media
We have simulated the temporal evolution of pressure due to capillary and
viscous forces in two-phase drainage in porous media. We analyze our result in
light of macroscopic flow equations for two-phase flow. We also investigate the
effect of the trapped clusters on the pressure evolution and on the effective
permeability of the system. We find that the capillary forces play an important
role during the displacements for both fast and slow injection rates and both
when the invading fluid is more or less viscous than the defending fluid. The
simulations are based on a network simulator modeling two-phase drainage
displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip
Viscous stabilization of 2D drainage displacements with trapping
We investigate the stabilization mechanisms due to viscous forces in the
invasion front during drainage displacement in two-dimensional porous media
using a network simulator. We find that in horizontal displacement the
capillary pressure difference between two different points along the front
varies almost linearly as function of height separation in the direction of the
displacement. The numerical result supports arguments taking into account the
loopless displacement pattern where nonwetting fluid flow in separate strands
(paths). As a consequence, we show that existing theories developed for viscous
stabilization, are not compatible with drainage when loopless strands dominate
the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev.
Let
Comparing and modeling land use organization in cities
The advent of geolocated ICT technologies opens the possibility of exploring
how people use space in cities, bringing an important new tool for urban
scientists and planners, especially for regions where data is scarce or not
available. Here we apply a functional network approach to determine land use
patterns from mobile phone records. The versatility of the method allows us to
run a systematic comparison between Spanish cities of various sizes. The method
detects four major land use types that correspond to different temporal
patterns. The proportion of these types, their spatial organization and scaling
show a strong similarity between all cities that breaks down at a very local
scale, where land use mixing is specific to each urban area. Finally, we
introduce a model inspired by Schelling's segregation, able to explain and
reproduce these results with simple interaction rules between different land
uses.Comment: 9 pages, 6 figures + Supplementary informatio
Dynamics of Wetting Fronts in Porous Media
We propose a new phenomenological approach for describing the dynamics of
wetting front propagation in porous media. Unlike traditional models, the
proposed approach is based on dynamic nature of the relation between capillary
pressure and medium saturation. We choose a modified phase-field model of
solidification as a particular case of such dynamic relation. We show that in
the traveling wave regime the results obtained from our approach reproduce
those derived from the standard model of flow in porous media. In more general
case, the proposed approach reveals the dependence of front dynamics upon the
flow regime.Comment: 4 pages, 2 figures, revte
Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections
In this note we analyze an anisotropic, two-dimensional bootstrap percolation
model introduced by Gravner and Griffeath. We present upper and lower bounds on
the finite-size effects. We discuss the similarities with the semi-oriented
model introduced by Duarte.Comment: Key words: Bootstrap percolation, anisotropy, finite-size effect
Ground State Structure in a Highly Disordered Spin Glass Model
We propose a new Ising spin glass model on of Edwards-Anderson type,
but with highly disordered coupling magnitudes, in which a greedy algorithm for
producing ground states is exact. We find that the procedure for determining
(infinite volume) ground states for this model can be related to invasion
percolation with the number of ground states identified as , where
is the number of distinct global components in the
``invasion forest''. We prove that if the invasion
connectivity function is square summable. We argue that the critical dimension
separating and is . When , we consider free or periodic boundary conditions on cubes of
side length and show that frustration leads to chaotic dependence with
{\it all} pairs of ground states occuring as subsequence limits. We briefly
discuss applications of our results to random walk problems on rugged
landscapes.Comment: LaTex fil
Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size
We identify a class of composite membranes: fluid bilayers coupled to an
elastic meshwork, that are such that the meshwork's energy is a function
\textit{not} of the real microscopic membrane area ,
but of a \textit{smoothed} membrane's area , which corresponds to the
area of the membrane coarse-grained at the mesh size . We show that the
meshwork modifies the membrane tension both below and above the scale
, inducing a tension-jump . The
predictions of our model account for the fluctuation spectrum of red blood
cells membranes coupled to their cytoskeleton. Our results indicate that the
cytoskeleton might be under extensional stress, which would provide a means to
regulate available membrane area. We also predict an observable tension jump
for membranes decorated with polymer "brushes"
Collective Particle Flow through Random Media
A simple model for the nonlinear collective transport of interacting
particles in a random medium with strong disorder is introduced and analyzed. A
finite threshold for the driving force divides the behavior into two regimes
characterized by the presence or absence of a steady-state particle current.
Below this threshold, transient motion is found in response to an increase in
the force, while above threshold the flow approaches a steady state with motion
only on a network of channels which is sparse near threshold. Some of the
critical behavior near threshold is analyzed via mean field theory, and
analytic results on the statistics of the moving phase are derived. Many of the
results should apply, at least qualitatively, to the motion of magnetic bubble
arrays and to the driven motion of vortices in thin film superconductors when
the randomness is strong enough to destroy the tendencies to lattice order even
on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev
Pattern Formation in Interface Depinning and Other Models: Erratically Moving Spatial Structures
We study erratically moving spatial structures that are found in a driven
interface in a random medium at the depinning threshold. We introduce a
bond-disordered variant of the Sneppen model and study the effect of extremal
dynamics on the morphology of the interface. We find evidence for the formation
of a structure which moves along with the growth site. The time average of the
structure, which is defined with respect to the active spot of growth, defines
an activity-centered pattern. Extensive Monte Carlo simulations show that the
pattern has a tail which decays slowly, as a power law. To understand this sort
of pattern formation, we write down an approximate integral equation involving
the local interface dynamics and long-ranged jumps of the growth spot. We
clarify the nature of the approximation by considering a model for which the
integral equation is exactly derivable from an extended master equation.
Improvements to the equation are considered by adding a second coupled equation
which provides a self-consistent description. The pattern, which defines a
one-point correlation function, is shown to have a strong effect on ordinary
space-fixed two-point correlation functions. Finally we present evidence that
this sort of pattern formation is not confined to the interface problem, but is
generic to situations in which the activity at succesive time steps is
correlated, as for instance in several other extremal models. We present
numerical results for activity-centered patterns in the Bak-Sneppen model of
evolution and the Zaitsev model of low-temperature creep.Comment: RevTeX, 18 pages, 19 eps-figures, To appear in Phys. Rev.
- …
