972 research outputs found
Recommended from our members
Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy
Multiple-principal element alloys known as high-entropy alloys have rapidly been gaining attention for the vast variety of compositions and potential combinations of properties that remain to be explored. Of these alloys, one of the earliest, the âCantor alloyâ CrMnFeCoNi, displays excellent damage-tolerance with tensile strengths of âŒ1 GPa and fracture toughness values in excess of 200 MPaâm; moreover, these mechanical properties tend to further improve at cryogenic temperatures. However, few studies have explored its corresponding fatigue properties. Here we expand on our previous study to examine the mechanics and mechanisms of fatigue-crack propagation in the CrMnFeCoNi alloy (âŒ7 ÎŒm grain size), with emphasis on long-life, near-threshold fatigue behavior, specifically as a function of load ratio at temperatures between ambient and liquid-nitrogen temperatures (293 Kâ77 K). We find that ÎKth fatigue thresholds are decreased with increasing positive load ratios, R between 0.1 and 0.7, but are increased at decreasing temperature. These effects can be attributed to the role of roughness-induced crack closure, which was estimated using compliance measurements. Evidence of deformation twinning at the crack tip during fatigue-crack advance was not apparent at ambient temperatures but seen at higher stress intensities (ÎK ⌠20 MPaâm) at 77 K by post mortem microstructural analysis for tests at R = 0.1 and particularly at 0.7. Overall, the fatigue behavior of this alloy was found to be superior, or at least comparable, to conventional cryogenic and TWIP steels such as 304 L or 316 L steels and Fe-Mn steels; these results coupled with the remarkable strength and fracture toughness of the Cantor alloy at low temperatures indicate significant promise for the utility of this material for applications at cryogenic environments
Angular distribution studies on the two-photon ionization of hydrogen-like ions: Relativistic description
The angular distribution of the emitted electrons, following the two-photon
ionization of the hydrogen-like ions, is studied within the framework of second
order perturbation theory and the Dirac equation. Using a density matrix
approach, we have investigated the effects which arise from the polarization of
the incoming light as well as from the higher multipoles in the expansion of
the electron--photon interaction. For medium- and high-Z ions, in particular,
the non-dipole contributions give rise to a significant change in the angular
distribution of the emitted electrons, if compared with the electric-dipole
approximation. This includes a strong forward emission while, in dipole
approxmation, the electron emission always occurs symmetric with respect to the
plane which is perpendicular to the photon beam. Detailed computations for the
dependence of the photoelectron angular distributions on the polarization of
the incident light are carried out for the ionization of H, Xe, and
U (hydrogen-like) ions.Comment: 16 pages, 4 figures, published in J Phys
Simulations of atomic trajectories near a dielectric surface
We present a semiclassical model of an atom moving in the evanescent field of
a microtoroidal resonator. Atoms falling through whispering-gallery modes can
achieve strong, coherent coupling with the cavity at distances of approximately
100 nanometers from the surface; in this regime, surface-induced Casmir-Polder
level shifts become significant for atomic motion and detection. Atomic transit
events detected in recent experiments are analyzed with our simulation, which
is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure
Relativistic and retardation effects in the two--photon ionization of hydrogen--like ions
The non-resonant two-photon ionization of hydrogen-like ions is studied in
second-order perturbation theory, based on the Dirac equation. To carry out the
summation over the complete Coulomb spectrum, a Green function approach has
been applied to the computation of the ionization cross sections. Exact
second-order relativistic cross sections are compared with data as obtained
from a relativistic long-wavelength approximation as well as from the scaling
of non-relativistic results. For high-Z ions, the relativistic wavefunction
contraction may lower the two-photon ionization cross sections by a factor of
two or more, while retardation effects appear less pronounced but still give
rise to non-negligible contributions.Comment: 6 pages, 2 figure
Effects of Cr/Ni ratio on physical properties of CrâMnâFeâCoâNi high-entropy alloys
Physical properties of ten single-phase FCC CrxMn20Fe20Co20Ni40-x high-entropy alloys (HEAs) were investigated for 0 †x †26 at%. The lattice parameters of these alloys were nearly independent of composition while solidus temperatures increased linearly by âŒ30 K as x increased from 0 to 26 at.%. For x â„ 10 at.%, the alloys are not ferromagnetic between 100 and 673 K and the temperature dependencies of their coefficients of thermal expansion and elastic moduli are independent of composition. Magnetic transitions and associated magnetostriction were detected below âŒ200 K and âŒ440 K in Cr5Mn20Fe20Co20Ni35 and Mn20Fe20Co20Ni40, respectively. These composition and temperature dependencies could be qualitatively reproduced by ab initio simulations that took into account a ferrimagnetic â paramagnetic transition. Transmission electron microscopy revealed that plastic deformation occurs initially by the glide of perfect dislocations dissociated into Shockley partials on {111} planes. From their separations, the stacking fault energy (SFE) was determined, which decreases linearly from 69 to 23 mJ·mâ2 as x increases from 14 to 26 at.%. Ab initio simulations were performed to calculate stable and unstable SFEs and estimate the partial separation distances using the Peierls-Nabarro model. While the compositional trends were reasonably well reproduced, the calculated intrinsic SFEs were systematically lower than the experimental ones. Our ab initio simulations show that, individually, atomic relaxations, finite temperatures, and magnetism strongly increase the intrinsic SFE. If these factors can be simultaneously included in future computations, calculated SFEs will likely better match experimentally determined SFEs
On waiting for something to happen
This paper seeks to examine two particular and peculiar practices in which the mediation of apparently direct encounters is made explicit and is systematically theorized: that of the psychoanalytic dialogue with its inward focus and private secluded setting, and that of theatre and live performance, with its public focus. Both these practices are concerned with ways in which âlive encountersâ impact on their participants, and hence with the conditions under which, and the processes whereby, the coming-together of human subjects results in recognizable personal or social change. Through the rudimentary analysis of two anecdotes, we aim to think these encounters together in a way that explores what each borrows from the other, the psychoanalytic in the theatrical, the theatrical in the psychoanalytic, figuring each practice as differently committed to what we call the âpublication of livenessâ. We argue that these âredundantâ forms of human contact continue to provide respite from group acceptance of narcissistic failure in the post-democratic era through their offer of a practice of waiting
The relational ethics of conflict and identity
The contemporary psychoanalytically inflected vocabulary of relational ethics centres on acknowledgement, witnessing and responsibility. It has become an important code for efforts to connect with otherness across fractures of hurt, oppression and suffering. One can see the deployment of this vocabulary to challenge patterns of exclusion and dehumanisation in zones of intense political conflict in many situations in which destructive hatred reigns. This paper traces some of the use of and disputes over this âacknowledgement-basedâ relational ethics in the recent work of Jessica Benjamin and Judith Butler. The field of application is their response to Israelâs treatment of the Palestinians, given their position as Jews. The challenge of the acknowledgement agenda leads back to an issue of general concern â the degree to which relational ethics can prise open apparently closed and defensive psychosocial identities
Is there still a place for the concept of therapeutic regression in psychoanalysis?
The author uses his own failure to find a place for the idea of therapeutic regression in his clinical thinking or practice as the basis for an investigation into its meaning and usefulness. He makes a distinction between three ways the term âregressionâ is used in psychoanalytic discourse: as a way of evoking a primitive level of experience; as a reminder in some clinical situations of the value of non-intervention on the part of the analyst; and as a description of a phase of an analytic treatment with some patients where the analyst needs to put aside normal analytic technique in order to foster a regression in the patient. It is this third meaning, which the author terms âtherapeutic regressionâ that this paper examines, principally by means of an extended discussion of two clinical examples of a patient making a so-called therapeutic regression, one given by Winnicott and the other by Masud Khan. The author argues that in these examples the introduction of the concept of therapeutic regression obscures rather than clarifies the clinical process. He concludes that, as a substantial clinical concept, the idea of therapeutic regression has outlived its usefulness. However he also notes that many psychoanalytic writers continue to find a use for the more generic concept of regression, and that the very engagement with the more particular idea of therapeutic regression has value in provoking questions as to what is truly therapeutic in psychoanalytic treatment
Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-α be better?
Background: The optimal dose of TNF-α delivered by isolated limb perfusion (ILP) in patients with locally advanced soft tissue sarcoma is still unknown. Patients and methods: Randomised phase II trial comparing hyperthermic ILP (38-40°) with melphalan and one of the four assigned doses of TNF-α: 0.5âmg, 1âmg, 2âmg, and 3/4âmg upper/lower limb. The main end point was objective tumour response on MRI. Secondary end points were histological response, rate of amputation and toxicity. Resection of the remnant tumour was performed 2-3 months after ILP. The sample size was calculated assuming a linear increase of 10% in the objective response rates between each dose level group. Results: One hundred patients (25 per arm) were included. Thirteen per cent of patients had a systemic leakage with a cardiac toxicity in six patients correlated with high doses of TNF-α. Objective tumour responses were: 68%, 56%, 72% and 64% in the 0.5âmg, 1âmg, 2âmg and 3 or 4âmg arms, respectively (NS). Sixteen per cent of patients were not operated, 71% had a conservative surgery and 13% were amputated with no difference between the groups. With a median follow-up of 24 months, the 2 year overall and disease-free survival rates (95% CI) were 82% (73% to 89%) and 49% (39% to 59%), respectively. Conclusion: At the range of TNF-α doses tested, there was no dose effect detected for the objective tumour response, but systemic toxicity was significantly correlated with higher TNF-α doses. Efficacy and safety of low-dose TNF-α could greatly facilitate ILP procedures in the near futur
- âŠ