2,191 research outputs found

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material

    Influence of cluster exposure on fruit composition and wine quality of Seyval blanc grapes

    Get PDF
    Experiments were conducted in 1981 and 1982 to investigate the influence of duster exposure on fruit composition, wine quality, and incidence of bunch rot (Botrytis cinerea PERS.) of the French-American hybrid grape cultivar Seyval blanc. Berry sampling from 4 exposure categories (western exposure, eastern exposure, partial shade, and full shade) indicated highest °Brix, pH and tartrate, and lowest titratable acidity (TA) and malate in the exposed fruit post veraison. Total acidity and malate were highest in exposed fruit between fruit set and veraison. Exposure of the fruit also reduced the incidence of bunch rot during the 1981 season. Wine quality differences were small and not statistically significant, although wines vinted from exposed fruit tended to score higher. Canopy management practices that optimize fruit exposure would be helpful in maximization of fruit and wine quality

    A dedicated electric oven for characterization of thermoresistive polymer nanocomposites

    Get PDF
    AbstractThe construction, characterization and control of an electric oven dedicated to the study of thermoresistive polymer nanocomposites is presented. The oven is designed with a heating plate capable of reaching 300°C with a resolution of 0.3°C and an area of uniform temperature of 3.8cm×2.5cm. The temperature is regulated by means of a discrete proportional–integral–derivative controller. A heat transfer model comprising three coupled non-linear differential equations is proposed to predict the thermal profiles of the oven during heating and cooling, which are experimentally verified. The oven is used for thermoresistive characterization of polymer nanocomposites manufactured from a polysulfone polymer and multiwall carbon nanotubes

    Biomechanical Analysis of Reducing Sacroiliac Joint Shear Load by Optimization of Pelvic Muscle and Ligament Forces

    Get PDF
    Effective stabilization of the sacroiliac joints (SIJ) is essential, since spinal loading is transferred via the SIJ to the coxal bones, and further to the legs. We performed a biomechanical analysis of SIJ stability in terms of reduced SIJ shear force in standing posture using a validated static 3-D simulation model. This model contained 100 muscle elements, 8 ligaments, and 8 joints in trunk, pelvis, and upper legs. Initially, the model was set up to minimize the maximum muscle stress. In this situation, the trunk load was mainly balanced between the coxal bones by vertical SIJ shear force. An imposed reduction of the vertical SIJ shear by 20% resulted in 70% increase of SIJ compression force due to activation of hip flexors and counteracting hip extensors. Another 20% reduction of the vertical SIJ shear force resulted in further increase of SIJ compression force by 400%, due to activation of the transversely oriented M. transversus abdominis and pelvic floor muscles. The M. transversus abdominis crosses the SIJ and clamps the sacrum between the coxal bones. Moreover, the pelvic floor muscles oppose lateral movement of the coxal bones, which stabilizes the position of the sacrum between the coxal bones (the pelvic arc). Our results suggest that training of the M. transversus abdominis and the pelvic floor muscles could help to relieve SI-joint related pelvic pain

    Prolonged ex-vivo normothermic kidney perfusion:The impact of perfusate composition

    Get PDF
    Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity for improved graft preservation and objective pre-transplant ex-vivo organ assessment. Currently, a multitude of perfusion solutions exist for renal NMP. This study aimed to evaluate four different perfusion solutions side-by-side and determine the influence of different perfusate compositions on measured renal perfusion parameters. Porcine kidneys and blood were obtained from a slaughterhouse. Kidneys underwent NMP at 37°C for 7 hours, with 4 different perfusion solutions (n = 5 per group). Group 1 consisted of red blood cells (RBCs) and a perfusion solution based on Williams' Medium E. Group 2 consisted of RBCs, albumin and a balanced electrolyte composition. Group 3 contained RBCs and a medium based on a British clinical NMP solution. Group 4 contained RBCs and a medium used in 24-hour perfusion experiments. NMP flow patterns for solutions 1 and 2 were similar, solutions 3 and 4 showed lower but more stable flow rates. Thiobarbituric acid reactive substances were significantly higher in solution 1 and 4 compared to the other groups. Levels of injury marker N-acetyl-β-D glucosaminidase were significantly lower in solution 2 in comparison with solution 3 and 4. This study illustrates that the perfusate composition during NMP significantly impacts the measured perfusion and injury parameters and thus affects the interpretation of potential viability markers. Further research is required to investigate the individual influences of principal perfusate components to determine the most optimal conditions during NMP and eventually develop universal organ assessment criteria

    Abundance And Vertical Flux Of Pseudo-Nitzschia In The Northern Gulf Of Mexico

    Get PDF
    Many species of the ubiquitous pennate diatom genus Pseudo-nitzschia have recently been discovered to produce domoic acid, a potent neurotoxin which causes Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia spp. were extremely abundant (up to 10(8) cells l(-1); present in 67% of 2195 samples) from 1990 to 1994 on the Louisiana and Texas, USA, continental shelves and moderately abundant (up to 10(5) cells l(-1); present in 18% of 192 samples) over oyster beds in the Terrebonne Bay estuary in Louisiana in 1993 and 1994. On the shelf there was a strong seasonal cycle with maxima every spring for 5 yr and sometimes in the fall, which were probably related to river flow, water column stability, and nutrient availability. In contrast, in the estuary there was no apparent seasonal cycle in abundance, but the time series of data is relatively short and the environment highly variable. At one site on the shelf, where sediment traps were deployed from spring to fall and sampled at frequent intervals in both 1990 and 1991, approximately 50% of the Pseudo-nitzschia spp. cells present in the water sank into sediment traps. Pseudo-nitzschia spp. were also abundant in surficial sediments. The species of Pseudo-nitzschia present, during this study were not routinely identified with the methods employed. However, toxin-producing P. multiseries has been identified previously from Galveston Bay, Texas, and cells from a bloom on the shelf in June 1993 were identified by scanning electron microscopy as P. pseudodelicatissima, which is sometimes toxic. Although there have been no known outbreaks of ASP in this area, historical data suggests that Pseudo-nitzschia spp,abundance may have increased on the shelf since the 1950s. It is hypothesized that the increase is due to doubling of the nutrient loading from the Mississippi and Atchafalaya rivers and increased eutrophication on the shelf

    Information-theoretic principle entails orthomodularity of a lattice

    Full text link
    Quantum logical axiomatic systems for quantum theory usually include a postulate that a lattice under consideration is orthomodular. We propose a derivation of orthomodularity from an information-theoretic axiom. This provides conceptual clarity and removes a long-standing puzzle about the meaning of orthomodularity.Comment: Version prior to published, with slight modification

    Renal Normothermic Machine Perfusion:The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool

    Get PDF
    The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality prior to transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared to static cold storage or even hypothermic machine perfusion. Supplemental Visual Abstract; http://links.lww.com/TP/C232
    corecore