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ABBREVIATION LIST 

AST, aspartate aminotransferase 

ATP, adenosine triphosphate 

COR, controlled oxygenated rewarming 

DGF, delayed graft function 

FMN, flavin mononucleotide 

MAP, mean arterial pressure 

NMP, normothermic machine perfusion 

PNF, primary nonfunction 

RBC, red blood cell 

SCS, static cold storage  
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ABSTRACT  

The increased utilization of high-risk renal grafts for transplantation requires optimization of 

pretransplant organ assessment strategies. Current decision-making methods to accept an organ 

for transplantation lack overall predictive power and always contain an element of subjectivity. 

Normothermic machine perfusion (NMP) creates near-physiological conditions, which might 

facilitate a more objective assessment of organ quality prior to transplantation. NMP is rapidly 

gaining popularity, with various transplant centers developing their own NMP protocols and 

renal viability criteria. However, to date, no validated sets of on-pump viability markers exist 

nor are there unified NMP protocols. This review provides a critical overview of the 

fundamentals of current renal NMP protocols and proposes a framework to approach further 

development of ex vivo organ evaluation. We also comment on the potential logistical 

implications of routine clinical use of NMP, which is a more complex procedure compared to 

static cold storage or even hypothermic machine perfusion. 

Supplemental Visual Abstract; http://links.lww.com/TP/C232   
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INTRODUCTION 

The shift towards the utilization of older organ donors with more comorbidities has stressed the 

importance of robust pretransplant organ viability assessment. Firstly, organs from expanded 

criteria donors or those donated after circulatory death are more susceptible to ischemia-

reperfusion injury, resulting in a higher risk of delayed graft function (DGF), primary 

nonfunction (PNF), and graft failure.1-3 Secondly, many kidneys offered for transplantation are 

ultimately not transplanted because there is doubt about their capacity to provide adequate 

short- and long-term function.2,4-6 These organs in particular would benefit from reliable 

pretransplant organ viability and quality assessment because a significant number of kidneys 

that are currently discarded, would presumably provide a favorable risk-benefit ratio to a 

proportion of waitlisted individuals.7,8 A plethora of nonperfusion-based pretransplant quality 

assessment tools exist, most often consisting of regression-derived prediction models that 

incorporate clinical donor and recipient variables. However, none of these models demonstrate 

adequate predictive power to guide clinical decision-making for individual donor kidneys.9-11 

Hence, the urgent need for more objective and accurate pretransplant kidney quality assessment 

tools remains. 

Renal normothermic machine perfusion (NMP) provides a near-physiological organ 

preservation technique because it circulates a warm (35–37ºC) perfusion solution through the 

renal vasculature delivering oxygen and nutrients.12 At normothermia, cellular metabolism can 

resume and replenish adenosine triphosphate (ATP) synthesis,12 which makes it likely that 

assessment of renal functional capacities, as well as the severity of the renal injury, might be 

performed during NMP.13,14 In addition, initial clinical experience shows that NMP has the 

potential to increase the number of kidney transplants by evaluating and transplanting kidneys 

that had initially been discarded for transplantation.15,16  
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The potential of NMP reaches beyond its diagnostic applicability, also encompassing the 

possibilities to serve as a promising superior preservation strategy17 and a platform for active 

organ reconditioning.18-20 Indeed, NMP reduces cold ischemia time and may mitigate the 

detrimental impact of ischemia-reperfusion injury.20,21 Preclinical and early clinical experience 

suggests that NMP might reduce DGF compared to static cold storage (SCS).22-25 The first 

randomized clinical trial comparing NMP with SCS is currently being conducted by the 

Cambridge group in the UK (ISRCTN15821205).26  

Hence, in recent years, considerable effort has been directed at the development of NMP as 

either an organ preservation, assessment, or repair platform. This effort has resulted in an 

increased heterogeneity among NMP protocols since transplant centers tend to mainly use their 

own developed procedure. Striving for more uniformity in protocols could enhance the 

progression towards standardized NMP viability criteria. 

Although NMP as an ex vivo organ evaluation platform may seem intuitive and technologically 

within reach, the key question in this regard is what to assess while a kidney is on the pump.  

In this review, we give an overview of the fundamentals of preclinical large animal and clinical 

NMP protocols used by several leading centers, because no single unified NMP protocol exists 

to date. We also provide a framework to consider when assessing kidney viability during NMP 

and discuss the logistical and economic impact that clinical implementation of NMP is likely 

to have on the renal transplant field.  
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RENAL NMP PROTOCOLS 

NMP uses extracorporeal membrane oxygenation and compound supplementation technology 

to provide the kidney with an oxygenated and nutrient-enriched perfusate throughout the NMP 

period. The different fundamental facets of NMP protocols can be roughly divided into the 

perfusate composition, arterial pressure delivered by the pump, oxygenation, temperature, and 

urine replacement (Figure 1). 

Perfusate composition 

The perfusate’s composition is not only of critical importance to ensure optimal organ 

preservation, it is also likely to affect the interpretation of potential renal viability markers 

during NMP. Hence, the chosen perfusate composition might depend on the specific aim of the 

application of NMP (ie, preservation, viability assessment, or repair). Almost all NMP 

protocols described so far use red blood cell (RBC)-based perfusates to ensure adequate tissue 

oxygenation. Nevertheless, recent preclinical research suggests that synthetic oxygen carriers 

feature equivalent oxygen-carrying capacities compared to RBCs.27,28 NMP perfusates are 

typically supplemented with different compounds to provide nutrients that aim to preserve renal 

cell viability. The Cambridge group use a perfusate based on Ringer’s solution, which has a 

relatively low oncotic pressure (Table 1).12 This perfusate has been used extensively in their 

preclinical and clinical work, with typically short (~1h) NMP durations in their most recent 

studies.26 Their perfusate was initially developed to reperfuse kidneys after a long period of 

SCS with the aim of organ reconditioning and assessment 1-2 hours prior to transplantation. 

The Toronto group employ a perfusate based on Ringer’s lactate and STEEN solution, which 

creates a physiological oncotic pressure and osmolarity.24,29 This NMP solution was developed 

to evaluate NMP as a technique to preserve organs for a longer period and it has been 

successfully utilized in prolonged normothermic kidney perfusions of up to 16 hours in a 

porcine autotransplantation model.17 Another perfusate that is based on human albumin and 
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electrolytes within physiological ranges is used by the MePEP consortium (Groningen and 

Rotterdam in the Netherlands, Oxford in the UK, and Aarhus in Denmark). This perfusate has 

mainly been used in porcine studies where NMP is combined with the addition of mesenchymal 

stem cells to repair kidneys during ex vivo perfusion.30,31 The Oxford group have published a 

discarded human kidney NMP study in which a somewhat similar perfusate based on 5% human 

albumin solution was used. This perfusate was designed for prolonged renal perfusions that 

lasted up to 24 hours.32 Groups in Brussels, Cleveland, Essen, Sacramento, Sydney, and 

Rotterdam have also conducted renal normothermic perfusion experiments, based on the 

existing perfusates used by the Cambridge and Toronto groups.33-38 

In order to maintain a stable near-physiological environment during perfusion, various 

compounds are typically infused (Table 1). Although the necessity of individual additives has 

remained largely unstudied, almost all centers seem to agree on supplementing their perfusate 

with a vasodilator and glucose. Insulin is also added by the Cambridge, Toronto, and MePEP 

groups in various concentrations to facilitate glucose absorption. It remains challenging to 

reliably appreciate the individual merits of existing renal NMP perfusates, due to the great 

diversity in formulations between centers. To date, no study has convincingly investigated the 

roles of individual perfusate components or even compared existing fluids side-by-side to 

establish which components could lead to an optimal NMP, as well as the best posttransplant 

outcome.  

Arterial pressure provided by the pump 

In the literature, there is no consensus about the optimal perfusion pressure during NMP, 

whether it should be applied in a pulsatile or nonpulsatile fashion, and whether a centrifugal or 

roller pump is best. Most groups use centrifugal pumps, which are considered to be less harmful 

to RBCs compared to roller pumps especially during prolonged perfusions.39 Although most 

groups apply a continuous pressure during normothermic perfusion, there is some evidence that 
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pulsatile pressure during NMP results in enhanced renal blood flow, creatinine clearance, 

sodium reabsorption, and lower tubular injury.40 Reported mean arterial pressure (MAP) during 

renal normothermic perfusion range between 40 and 95 mmHg.26,34,40-42 Preclinical studies 

conducted by Hosgood and colleagues found superior outcomes for higher MAPs (75 and 95 

mmHg) compared to 55 mmHg in terms of renal function and endovascular injury during NMP 

and subsequent simulated reperfusion.43,44 They now typically set their pressure at 75 mmHg. 

The Toronto group set their pump speed to a fixed rate that induces a MAP of 75 mmHg at the 

start of NMP with an observed drop in perfusion pressure to 65 mmHg over time.25  

Oxygenation 

Most experimental kidney NMP systems use a supraphysiological perfusate oxygen 

concentration of approximately 550-650 mmHg. Administered oxygen is typically balanced 

with a small percentage of carbon dioxide to create optimal acid-base homeostasis. However, 

hyperoxia can promote reactive oxygen species production, resulting in additional renal 

injury.45,46 The Cambridge group investigated the effect of altered oxygenation during NMP 

(95% O2 / 5% CO2, pO2 550 mmHg; 25% O2 / 5% CO2 / 70% N2, pO2 206 mmHg; 12% O2 / 

5% CO2 / 83% N2, pO2 81 mmHg).47 In their study, a reduction in oxygen concentration led to 

a decrease in oxygen kinetics (ie, oxygen delivery, extraction, and consumption) but did not 

significantly influence tubular function, creatinine clearance, urine output, or biomarkers of 

renal injury during simulated reperfusion after NMP. However, further work on altering oxygen 

concentration during NMP should also incorporate assessment of oxidative damage. 

Oxygen consumption during NMP is often reported. The most commonly used equation was 

introduced by Stubenitsky et al in 2000 [(arterial pO2 – venous pO2) x perfusate flow 

rate/weight].48 Over the past years, more complex formulas to express oxygen consumption 

have been derived based on insights into various aspects of ex vivo renal physiology.27,47,49-53 

Most of these formulas also take the oxygen bound to an oxygen carrier into account, which 
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more adequately reflects the total oxygen content when an oxygen carrier is added to the 

perfusate.  

Temperature 

Typically, the temperature during NMP is set at 37ºC, but this might be different, depending on 

the specific aim of ex vivo perfusion. Preclinical work has shown that, upon simulated organ 

reperfusion, tubular and renal function was better preserved when normothermic (37ºC), instead 

of subnormothermic (32ºC), perfusion preceded it.54 Nevertheless, the subnormothermic 

perfusion system used by Brasile et al did not seem to cause relevant renal injury and showed 

superior posttransplant urine production and serum creatinine levels compared to nonperfused 

kidneys.48 An important question is whether normothermia should be induced abruptly or 

gradually. It has been suggested that controlled oxygenated rewarming (COR) improves 

cellular homeostasis and mitigates rewarming injury in a porcine NMP model.35,55 COR also 

enhances early posttransplant cortical microcirculation, thereby preventing the renal cells from 

being jeopardized by pumping against a high cortical resistance.56 Gradual rewarming has 

typically been pursued up to 20ºC over a period of 90 minutes. As rewarming the perfusate 

gradually between 20ºC and 35ºC showed no additional protection, the upper limit to which the 

perfusate should be gradually rewarmed, starting from cold (0-7ºC) preservation, is suggested 

to be approximately 20ºC.55 Ischemia-free kidney transplantation is another promising strategy 

to mitigate ischemic and hypothermia-induced injury. This logistically challenging method 

connects the kidney to the NMP device during organ procurement in such a way that ischemia 

associated with procurement, preservation, and implantation is avoided altogether.57 

Urine replacement 

Loss of circulating volume by urine production of the ex vivo perfused kidney should be 

replaced to maintain the circuit’s circulating volume. The Toronto and Cambridge groups 

replaced this volume by adding Ringer’s solution or Ringer’s lactate to the perfusate. 
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Alternatively, Weissenbacher et al showed that recirculating the urine is feasible and that it 

results in a significantly higher perfusate flow rate, as well as a revitalized metabolism 

determined by upregulated levels of ATP synthase, NADH dehydrogenase, and 

oligosaccharyltransferase.58,59 Blum et al have applied urine recirculation in their experiments 

as they hypothesized that replacing proteinuric and hematuria urine with Ringer’s lactate would 

lead to the gradual depletion of oncotic pressure and impair oxygen-carrying capacity.34 

Nevertheless, the Toronto group have performed stable perfusions for up to 16 hours without 

the use of urine recirculation.60 Further preclinical investigation of urine recirculation during 

NMP is required to determine its full potential. 

DIAGNOSTIC POTENTIAL 

Even though the potential of NMP as a diagnostic platform has been recognized, the search for 

relevant and independently predictive viability markers has only just started and is likely to 

increase with wider clinical implementation of NMP. A detailed overview of potential 

biomarkers during NMP and their preclinical and clinical validation is displayed in Table 2. In 

the next paragraphs, we will summarize current knowledge on kidney viability assessment 

during NMP. For a more detailed review of the proposed framework, we refer to De Beule et 

al.14 

Assessing nephron function and injury 

Creatinine clearance and fractional sodium excretion are frequently reported as markers to 

assess nephron function.36,47,50,61,62 It is not known whether these parameters during NMP are 

predictive for posttransplant function. Importantly, since perfusate composition and perfusion 

pressures will change hydrostatic and oncotic pressures, they influence filtration and ultimately 

production and composition of “urine”. In addition, an ex vivo perfused kidney experiences no 

humoral influences, which are essential to maintain near-physiologic tubular function. As a 

result, typical renal functional markers such as those mentioned above, which are derived from 
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our clinical in vivo reference frame, are unlikely to be useful for ex vivo organ viability 

assessment. Metabolic activity and oxygen consumption are high in tubular cells and therefore 

oxygen consumption has been proposed as a marker of kidney metabolic activity in animal 

models.47,50,62,63 It is currently unclear how and if oxygen consumption indeed reflects viability 

as there is evidence that oxygen consumption in the kidney during NMP is dependent on the 

oxygen concentrations offered.47 Injured and dying cells shed or leak cytosolic and 

mitochondrial content that could be used as injury markers in urine or perfusate and some of 

these are cell-specific; eg, kidney injury molecule-1 (KIM-1) originates from proximal tubular 

cells and neutrophil gelatinase-associated lipocalin (NGAL) originates from the thick ascending 

limb.64-66 As distal tubular medullary segments (medullary thick ascending limbs and medullary 

collecting ducts) are more susceptible to ischemia compared to proximal tubular segments 

located in the outer medulla or the cortex, biomarker patterns might be informative on the 

location of the injury.67 Additionally, there seems to be an inherent sensitivity of proximal 

tubular cells to warm ischemic injury whereas cold ischemia elicits distal tubular injury, with 

different patterns of response.68 Non-cell-specific injury markers aspartate aminotransferase 

(AST) and lactate correlated with posttransplant renal graft function, measured by peak serum 

creatinine.25 Flavin mononucleotide (FMN), a lesser-known biomarker, has also been shown to 

correlate with posttransplant renal graft function. In a pilot study, significantly higher levels of 

FMN during NMP were found in kidneys with DGF and PNF after transplantation.69 The scarce 

data investigating perfusate or urine biomarkers during NMP originate from animal studies or 

small case series and none have been validated in large cohorts of kidney transplants.25,62  

Assessing the vascular compartment 

Endothelial damage is an important determinant of renal viability. Due to the limited 

regenerative capacity of endothelial cells, microvascular damage in the kidney has an adverse 

effect on long-term graft survival.70 In vivo, endothelial damage and viability are reflected by 
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an increase in vascular resistance related to a combination of disruption of the endothelial cell 

lining favoring thrombosis and the “no-reflow” phenomenon, which is the suboptimal 

restoration of perfusion after a period of ischaemia.71,72 Tietjen et al showed the presence of 

RBC plugs in both cortex and medulla during 4 hours of NMP of discarded human kidneys, 

and these likely contribute to injury and the no-reflow phenomenon.73 Little is known about the 

meaning of flow and resistance during NMP, although with increasing perfusion time, flow is 

usually seen to increase while resistance drops if perfusion pressures are maintained constant. 

Flow—not resistance—is one of the parameters of the kidney quality assessment score 

developed by the Cambridge group which combines macroscopic appearance, renal blood flow, 

and urine output during 1 hour of NMP performed at the end of SCS.74 The use of this score 

has provided some proof that NMP kidney viability assessment can lead to transplantation of 

initially discarded kidneys.15 It is, however, important to note that absolute values of renal blood 

flow and urine production will strongly depend on perfusion pressure settings as well as 

perfusate composition (additives and oncotic pressures). Therefore, scores such as the kidney 

quality assessment score might not necessarily be transferrable to other settings where different 

pumps, perfusate compositions, and additives are used. As healthy endothelial cells respond to 

vasoactive substances, the disappearance of such a vasoactive response could convey 

information about endothelial dysfunction and might be incorporated as a variable in viability 

testing. In a porcine model of NMP, Bath et al showed that kidneys, exposed to 2 hours of warm 

ischemia, did not elicit any vasodilating capacity when exposed to acetylcholine, suggesting 

irreversible injury of endothelial cells.75 On the other hand, kidneys exposed to 16 hours of cold 

ischemia only showed a diminished response to acetylcholine.75 

Assessing the immune (cell) compartment 

In vivo, ischemia-reperfusion injury causes sterile inflammation, triggering activation of innate 

and adaptive immune systems, as well as leukocyte recruitment that is reinforced by cytokine 
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and chemokine release.76,77 Additionally, the endothelium and epithelial cells play a key 

immunological role in this postreperfusion inflammatory response.71,78 Removal of circulating 

leukocytes from the NMP perfusate is thought to minimize inflammation compared to whole 

blood perfusion. However, it is interesting to note that whole blood perfusion showed lower 

AST levels compared to a red-cell-only-based perfusate in a model of pig liver NMP.79 This 

illustrates that the ischemia-reperfusion cascade, its feedback loops, and its effects during ex 

vivo perfusion are insufficiently understood. Furthermore, despite the absence of circulating 

leukocytes during NMP, resident leukocytes are released. It is unclear what the implications of 

the presence and release of resident leukocytes are and whether the phenotype and behavior of 

these cells could be predictive of posttransplant outcomes.36,80,81 The use of a leukocyte filter 

during 3 hours of ex vivo porcine lung NMP resulted in reduced T cell infiltration posttransplant 

compared to controls.82 It has been established that inflammatory cytokines are released during 

kidney perfusion, although it is currently unclear which cytokines could be predictive of 

outcome. The use of a cytokine filter during 6 hours of pig kidney NMP reduced levels of 

interleukin-8 (neutrophil-attractant) and interleukin-6 (a proinflammatory cytokine) when 

compared to control.42 Nevertheless, no difference in kidney function during NMP could be 

noted and these kidneys were not actually transplanted.  

Long-term renal function 

Currently, almost all NMP studies investigate biomarkers correlated with acute injury and 

short-term graft survival. Since most acute injury restores after transplantation; chronic renal 

damage will determine long-term graft survival. Predicting long-term posttransplant renal graft 

survival during NMP would make this technique particularly valuable as a pretransplant 

diagnostic tool. The main reason for late graft loss is the progression of renal fibrosis, which is 

mainly the result of the continuous alloimmune response to the donor graft despite 

immunosuppression.83 This arises due to the deposition of unrecognized donor-specific 
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antibodies or de novo antibodies on allograft capillary endothelial surfaces, which are produced 

after kidney transplantation and activate both coagulation and complement.84 Thereby, pre-

existing renal fibrosis in donor grafts is associated with diminished long-term graft survival, in 

which the severity of fibrosis correlates with the duration of graft survival.85 Furthermore, long-

term outcomes are also affected by the quality of the donor organ, which is mainly determined 

by the biological age of the donor.83,86 The donor organ quality can also be affected by factors 

during donation and transplantation. It has been suggested that prolonged warm ischemia time 

and anastomosis time are associated with adverse long-term outcomes.87,88 However, more 

clinical studies are needed to confirm this. Regarding recipient factors, increased (biological) 

age, recurrence of native kidney disease, anti-HLA immunization, ethnic background (African 

American), longer time on dialysis, and cardiovascular complications at the time of 

transplantation are associated with adverse long-term outcomes.86 Since long-term graft 

survival and function are determined by multidimensional factors, an integrative approach may 

be required for pretransplant outcome prediction that combines viability measurements during 

NMP with donor, organ, and recipient characteristics, which all come with their own 

multifaceted complexity. 

WHEN TO START NMP 

The optimal timing to start NMP largely depends on the aim of its clinical application, ie, 

preservation, viability assessment, or repair; all necessitating an individual tailored strategy 

(Figure 2). The potential of NMP to ameliorate renal preservation and serve as a repair platform, 

most likely demands prolonged NMP times (strategy 1). Using NMP as an assessment tool 

presumably has a wider range of options (strategy 2, 3 & 4). Today, a short period of NMP at 

the recipient center (strategy 3) has been most commonly reported.26,89,90 This strategy provides 

the advantage to assess organ quality just prior to transplantation, also taking the effects of 

hypothermic-induced injury into account. Another possibility is to assess organs immediately 
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after retrieval at the donor hospital (strategy 2). Applying NMP at the donor center avoids the 

complex logistics and safety issues associated with NMP during organ transport. Moreover, 

depending on a country’s geographical area, expertise and experience of individual centers, the 

complexity of the various time-related strategies can be reduced by centralizing clinical renal 

NMP to larger hubs (strategy 4). This could also enhance the quality and allows better 

standardization of the procedure, as has been proposed for normothermic lung perfusion.91  

LOGISTICAL & ECONOMIC IMPLICATIONS 

NMP is technically complex, time-consuming, and entails a risk of technical failure, which 

would leave the organ exposed to ischemia at normothermic temperatures. Today, no truly 

“stand-alone” renal NMP devices are available, requiring any perfusion to be supervised at all 

times. Clinical implementation of NMP will result in structural changes to the current donation 

and transplantation logistics. This will most likely necessitate transplant centers to establish a 

specialized perfusion room or use existing operating theatres for the sterile conduct of NMP. In 

addition, dedicated staff, trained in organ perfusion, will need to join the surgical teams. 

Depending on when NMP is initiated in the donation and transplantation cascade (Figure 2), 

dedicated personnel may have to travel to the donor center or run organ perfusion hubs.  

The actual costs associated with the clinical implementation of NMP remain largely unknown. 

Access to out-of-hours specialist expertise will be mandatory to ensure a proper course of action 

and this will likely be an important determinant of expenses.92 Other major costs comprise the 

NMP disposables, perfusate components, equipment needed to obtain samples, analyses for 

viability assessment, facility fees, NMP training, and depreciation of the perfusion device. 

Future clinical trials comparing NMP with SCS or hypothermic machine perfusion should also 

incorporate cost-effectiveness studies. Moreover, clinical studies aimed at determining whether 

renal NMP can increase organ utilization rates would benefit from the inclusion of cost-

effectiveness outcomes. Indeed, for liver transplantation, it has already been shown that NMP 
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has the potential to salvage a substantial number of organs from discard.89,93-96 In this regard, it 

has been suggested that the extent to which viability assessment of discarded livers alleviates 

the organ shortage outweighs the additional costs of NMP.97 This could ultimately also be the 

case for NMP of deceased-donor kidneys. 

PROSPECTS 

Finding novel biomarkers and elucidating pathophysiological processes can eventually pave 

the way for meaningful pretransplant kidney assessment, followed by active initiation of 

regeneration by targeting the associated pathways ex vivo. Two promising innovative 

diagnostic approaches could help to accomplish this. One of these is multiomics analysis. The 

multidimensional biological complexity of assessing renal allograft function and predicting 

posttransplant outcome mandates an integrative approach with the implementation of 

multiomics data (for example, a combination of genomics, transcriptomics, proteomics, and 

metabolomics).98 Such a multilayered omics approach has an unprecedented potential to find 

novel biomarkers by enabling hypothesis generation with fewer a priori assumptions and could 

be performed during NMP.99 Once relevant biomarkers and pathways have been identified, 

analyses could be simplified to rapid point-of-care measurements, which will fit into the 

typically very short pretransplant assessment time window. In addition, multiomics-based 

understanding of ex vivo renal physiology could result in powerful models capable of mapping 

disease phenotypes and renal graft outcome.98,100 Implementing such approaches during NMP 

could ultimately alleviate the organ shortage by simplifying as well as optimizing the decision-

making process with regard to organ acceptance and discard. A second tool to advance 

pretransplant kidney viability assessment during NMP is through innovative imaging 

methods.11,101-103 Near-infrared spectroscopy (NIRS), (functional) MRI ([f]MRI), positron-

emission tomography (PET), contrast-enhanced ultrasound (CEUS), ultrafast ultrasound 

imaging (UUI), laser speckle imaging (LSI), and multiphoton microscopy (MPM) imaging all 
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have the potential to unravel renal physiological processes during NMP in a noninvasive 

manner (Table 3). Additionally, these methods may provide more information about regional 

differences in the functional properties of the ex vivo perfused kidney. These techniques could 

be a valuable add-on to renal viability assessment during NMP in the near future. 

CONCLUSION 

An increasing number of centers are investigating renal NMP, either as a preservation tool, a 

viability assessment tool, or a repair platform. Great diversity exists among NMP protocols and 

interpretation of the read-outs during NMP. Moreover, to date, no validated (set of) ex vivo 

viability biomarkers have been identified. To establish effective preservation by NMP, as well 

as use NMP as an objective pretransplant organ assessment tool and eventually interpret NMP 

data on a standardized global basis, more uniformity in NMP protocols is of paramount 

importance. Best practice guidelines and consensus on protocols would likely progress the field. 

Future research should focus on identifying the ideal perfusate composition, perfusion duration 

and pressures, and the need for urine recirculation and specific additives, for each application 

area of renal NMP.  
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Figure Legends 

Figure 1. Schematic representation of a normothermic machine perfusion setup with the most 

commonly used components, as well as an indication of typical strategies to approach 

important aspects of the perfusion procedure. 

Figure 2. Different applications of renal normothermic machine perfusion. (1): normothermic 

machine perfusion (NMP) for the entire preservation interval. (2): a short period of NMP at the 

donor hospital followed by cold preservation ([CP], either static cold storage or hypothermic 

machine perfusion) for transportation to the recipient center. (3): NMP at the recipient center 

only. (4): an intermittent period of NMP which could be executed in an organ hub or at the 

recipient center, after which kidneys are again preserved with CP. Reproduced from Jochmans 

et al146 with permission from the publisher. 
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Table 1. Perfusate constituents per research group 

Components Cambridge Toronto MePEP Oxford 

Red blood 

cells 

1 unit12 125 ml24 170 ml30 

288 ml31  

1 unit32 

Main 

component 

200 – 400 ml12  

500 ml104 

1000 ml47,54 

Ringer’s solution 

200 ml Ringer’s 

lactate 

+  

150 ml STEEN 

solutiona,24 

250 ml of 50 

g/l human 

albumin 

solution30 

250 ml of 50 

g/l human 

albumin 

solution32 

175 ml Ringer’s 

lactate 

+ 

150 ml STEEN 

solutiona,29 

300 ml sodium 

chloride 0.9%  

+ 

100 ml of 200 

g/l human 

albumin 

solution31 

Mannitol 

20-25 ml, 

10%12,105 

5 g47,54 

10 mg104 

n/a 10 mg30 

0.016 g31  

10 ml, 10%32 

Calcium 

gluconate 10% 

n/a 1.8 ml24 3 ml30 

4.8 ml31 

10 ml32 

Sodium 

bicarbonate 

8.4% 

12 ml104,105 

10-40 ml12 

 

8 ml24 

 

5 ml30 

8 ml31 

5–15 ml32 

Anticoagulants 
2-4 ml heparin 

1000 IU/ml12 

1000 IU 

heparin24,29 

n/a n/a 

Antibiotics 

750 mg 

cefuroxime104 

n/a 300 mg30 

8 ml31 

Augmentin  

750 mg 

cefuroxime32 

10 ml 

Augmentin 1.2 

g12 

Other 

ingredients 

2 ml (4 mg)12 

2 ml (10 mg)105  

3.3 mg/ml47,54 

10 mg104 

dexamethasone 

27 ml DRO 

filtered water24,29 

 

 

6 ml glucose 

5%  

+ 

5 IU insulin30 

n/a 

9.6 ml glucose 

5%  

+ 

8 IU insulin31 

Additives 

Vasodilator 

0.5 mg 

epoprostenol  

 

Verapamil 

(intraarterial) 

 

1.25 mg30 

2.5 mg31  

bolus 

0.5 mg 

epoprostenol  
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Rate: 4 ml/h,12 5 

ml/h47,54 

Rate: 0.25 

mg/h24,29 

 

verapamil at 

the start of 

NMP 

Continuous 

infusion of 

verapamil 

during NMP 

(0.25 mg/h)30,31 

Rate: 4 μg/h,32 

rate not 

described59  

25 mg sodium 

nitroprusside  

 

Rate: 25 ml/h 

(during the first 

hour)104,105 

Verapamil, 

rate not 

described59  

Glyceryl 

trinitrate, rate 

not 

described59  

Glucose 

Glucose 5% 

 

Rate: 7 ml/h12 

 

 

 

 

Amino acids and 

glucose 

(intravenous) 

0,5 ml/h24,29 

Target glucose 

concentration: 5-

15 mmol/l  

Glucose 5%  

Added at a 

rate of 4ml/h if 

perfusate 

glucose levels 

became <4.5 

mmol/l31  

 

Bolus 2.5 ml of 

a lipid-free 

parenteral 

nutrition 

solution (total 

parenteral 

nutrition) if 

glucose 

dropped below 

4 mmol/l 

Other additives 

Nutriflex 

infusion12 was 

added together 

with the 

following: 

 

100 units insulin  

 

25 ml sodium 

bicarbonate 

8.4%  

 

5 ml 

multivitamins  

 

Rate: 20 ml/h 

Insulin 

(intravenous) 

 

5 IE/h24,29 

 

60 mg30 

1.6 ml31 

Augmentin 

was added 

every hour 

n/a 

Calcium 

gluconate 10% 

Adding if 

perfusate ionic 

concentration 

was <1.1 

mmol/l31 

DRO, double reverse osmosis; n/a, not applicable. 

aDextran 40, 5g/L; sodium chloride, 86 mmol/L; potassium chloride, 4.6 mmol/L; calcium 

chloride dihydrate, 1.5 mmol/L; sodium dihydrogen phosphate dihydrate, 1.2 mmol/L; sodium 

bicarbonate, 15 mmol/L; magnesium dichloride hexahydrate 1.2 mmol/L; D(+)-glucose 

monohydrate, 11 mmol/L; human serum albumin (200 g/l), 70 g/L; sodium hydroxide (1 M); 

sterile water.106  
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Table 2. Potential biomarkers during NMP and their preclinical and clinical validation 
 

Biochemical 
marker 

Source 
Site of 

measurement 
Application during NMP 

Validation 

Preclinical and clinical 

NGAL 

Cells of the 

thick 

ascending 

limb 

Perfusate/blood 

and urine 

 
Cambridge15,26,42,44,61,62,107 

 

Toronto23,60,108 

 
Oxford32,59 

 
Other30,109 

Preclinical 

A higher level of urinary NGAL after NMP was associated with higher EVKP 

scores, reflecting more severe renal injury.62 

 

Clinical 

Some research suggests that NGAL is a promising biomarker to detect early 

posttransplant graft function.110–114 However, NGAL measured during HMP 

failed to show an independent relationship with DGF, PNF, and 6-months 

overall graft loss and recipient mortality.115 Moreover, 1 day posttransplant 

measured NGAL did not correlate with 1-year graft function.116 

LDH 
Parenchymal 

cells 
Perfusate/blood 

Cambridge117,118 

 

Toronto17,23-25,49,60,108 

 

Other53,109,119 

Preclinical 

LDH measured during NMP did not correlate with posttransplant renal 

function in a porcine autotransplantation study.25 

 

Clinical 

In a DCD kidney transplantation study, LDH measured during HMP was 

associated with PNF.120 However the diagnostic and predictive accuracy of 

PNF is relatively poor.120,121 

AST 
Parenchymal 

cells 
Perfusate/blood 

Cambridge117,118,122,123 

 

Toronto17,23-25,29,49,60,108 

 

Other53,109,119 

Preclinical 

A positive correlation has been shown between AST levels during NMP and 

posttransplant peak serum creatinine in a porcine autotransplantation 

model.25 Extended periods of warm ischemia are associated with higher AST 

levels during NMP.118 

Lactate 
Parenchymal 

cells 
Perfusate/blood 

Toronto17,23-25,29,49,60,108 

 
Oxford59 

 
Other52,119 

Preclinical 

Increased warm ischemia times are associated with diminished renal lactate 

clearance during NMP.17,25 ACCEPTED
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KIM-1 
Proximal 

tubular cells 

Perfusate/blood, 

urine, and 

tissue 

 

Cambridge62 

 

Oxford32,59 

 

Preclinical 

Urinary KIM-1 levels were not associated with perfusion parameters or renal 

function in the donor.62 

 

Clinical 

Posttransplant urinary KIM-1 is an independent predictor of graft loss.124 

Pretransplant tubular expression does not predict DGF but correlates with the 

degree of interstitial fibrosis in humans.125,126 When measured in the 

perfusate during HMP, KIM-1 failed to show an independent relationship with 

DGF.115 

L-FABP 
Proximal 

tubular cells 

Perfusate/blood 

and urine 
Cambridge26 

Clinical 

Higher urinary L-FABP concentrations are associated with slightly lower 6-

month eGFR, only among recipients without delayed graft function.114 Higher 

urinary L-FABP levels, obtained directly after transplantation, has been 

associated with significantly lower 2-year eGFR.127 

FMN 
Mitochondrial 

complex I 
Perfusate/blood Cambridge69 

Clinical 

FMN levels during liver HMP were predictive of graft loss within 3 months 

after liver transplantation.128 FMN levels during renal NMP were significantly 

higher in the kidneys that developed DGF and PNF.69 

π-GST 
Distal tubular 

cells 

Perfusate/blood 

and urine 
n/a 

Clinical 

Elevated π-GST end-HMP levels have been independently associated with 

DGF.121,129 

ET-1 Tubular cells 
Perfusate/blood 

and urine 
Cambridge61,62,130 

Preclinical 

Increased urinary levels of ET-1 were associated with higher EVKP scores.62 

A period of warm ischemia is associated with higher urinary ET-1 levels 

during NMP.61 

VWF 
Endothelial 

cells 

Perfusate/blood 

and tissue 

Cambridge123 

 

Other53 

Preclinical 

In a porcine study, there was no significant difference in secreted VWF 

between SCS, HMP, and NMP upon simulated reperfusion.123 

VCAM-1/ 

ICAM-1 

Endothelial 

cells 

Perfusate/blood 

and tissue 
Other53,131 

Clinical 

VCAM-1 gene polymorphism has shown to be a risk factor for dialysis after 

transplantation.132 ICAM1 genotype is an independent risk factor for ACCEPTED
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increased creatinine concentration after 12, 24, 36, 48 and 60 months of 

transplantation.132 

TBARS 
Lipid 

peroxidation 

Perfusate/blood 

and tissue 
Other109,119 

Clinical 

MDA levels shortly after kidney transplantation were higher in DGF patients. 

Values at 7 days posttransplant represented an independent predictor of 1-

year graft function.133 

Protein 

carbonyls 

Protein 

oxidation 

Perfusate/blood 

and tissue 
Cambridge105,134 

Preclinical 

A significant correlation has been shown between protein carbonyls and 

creatinine clearance during NMP with extended warm ischemia times.134 

8-

isoprostane 

Lipid 

peroxidation 
Perfusate/blood Cambridge105,134 

Preclinical 

Plasma levels of 8-isoprostane, 60 minutes posttransplant, were significantly 

lower in the group of NMP compared to HMP in a porcine autotransplantation 

model.105 

ATP content 

/ATP:ADP 

ratio 

Parenchymal 

cells 
Tissue 

Cambridge134,135 

 

Other119 

Preclinical 

In a study with discarded human livers, a significant increase in ATP content 

was observed after 3 hours of subnormothermic machine perfusion and a 

statistically nonsignificant increase in ATP:ADP ratio.136 

 

ADP, adenosine diphosphate; AST, aspartate aminotransferase; ATP, adenosine triphosphate; DBD, donation after brain death; DCD, donation 

after circulatory death; DGF, delayed graft function; ET-1, endotheline-1; EVKP, ex vivo normothermic kidney perfusion; FMN, flavin 

mononucleotide; π-GST, pi glutathione S-transferase; HMP, hypothermic machine perfusion; ICAM-1, intercellular adhesion molecule 1; KIM-1, 

kidney injury molecule-1; LDH, lactate dehydrogenase; L-FABP, liver-type fatty acid-binding protein; n/a, not applicable; NGAL, neutrophil 

gelatinase-associated lipocalin; NMP, normothermic machine perfusion; PNF, primary nonfunction; SCS, static cold storage; TBARS, 

thiobarbituric acid-reactive substances; VCAM-1, vascular adhesion molecule 1; VWF, Von Willebrand factor.  
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Table 3. Examples of innovative imaging techniques that could be applied during renal 

NMP 

Imaging technique Modalities 

Near-infrared 

spectroscopy 

(NIRS) 

NIRS is a diffuse optical technique that uses the near-infrared region 

of the electromagnetic spectrum to measure oxy-, deoxy-, and total 

hemoglobin oxygen saturation in the microcirculation.137 

MRI 

MRI is a class of static and functional imaging methods developed 

to demonstrate regional, time-varying changes in physiological 

processes. Promising functional MRI methods are based on blood 

oxygenation level-dependent (BOLD) contrast and arterial spin 

labelling (ASL) perfusion contrast.138 BOLD MRI is dependent on the 

paramagnetic features of deoxyhemoglobin to indicate perfusate 

oxygenation levels; ASL MRI magnetically labels perfusate flowing 

into the ex vivo kidney, allowing the assessment of renal perfusion 

without a contrast agent.139 

Positron-emission 

tomography (PET) 

PET is a medical imaging modality that uses radioisotope-labelled 

substances that emit positrons and act as molecular probes to 

display and measure biochemical processes.140  

Contrast-enhanced 

ultrasound (CEUS) 

CEUS uses microbubbles as a non-nephrotoxic contrast-agent and 

offers high-resolution mapping of the microvasculature of the 

kidney.141 

Ultrafast 

ultrasound imaging 

(UUI) 

UUI is based on the unfocused transmission of plane waves.142 It 

can be used to display and quantify tissue stiffness, perfusate 

motion, and contrast dynamics with high frame rates.143 

Laser speckle 

imaging (LSI) 

LSI applies an infrared illumination to a surface, which records 

changes in laser speckle contrast. This technique provides an 

excellent spatial and temporal resolution for assessing the renal 

cortical perfusate flow.139 

Multiphoton 

microscopy (MPM) 

imaging 

MPM imaging is a technique that uses multiphoton excitation 

fluorescence microscopy for optical sectioning of renal tissue.139 

Dynamic processes, the interplay between segments of the 

nephron, and multiple renal functions can be quantitively visualized 

at near real-time speed and with submicron resolution (for instance, 

glomerular filtration rate, microvascular function, apoptosis, 

proximal tubule endocytosis, and protein expression can be 

measured).139,144,145 
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Figure 1 
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Figure 2 
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