3,337 research outputs found
How alternative food networks work in a metropolitan area? An analysis of Solidarity Purchase Groups in Northern Italy
Our paper focuses on Solidarity Purchase Group (SPG) participants located in a highly urbanized area, with the aim to investigate the main motivations underlining their participation in a SPG and provide a characterization of them. To this end, we carried out a survey of 795 participants involved in 125 SPGs in the metropolitan area of Milan (Italy). Taking advantage of a questionnaire with 39 questions, we run a factor analysis and a two-step cluster analysis to identify different profiles of SPG participants. Our results show that the system of values animating metropolitan SPG practitioners does not fully conform to that traditionally attributed to an alternative food network (AFN). In fact, considerations linked to food safety and healthiness prevail on altruistic motives such as environmental sustainability and solidarity toward small producers. Furthermore, metropolitan SPGs do not consider particularly desirable periurban and local food products. Observing the SPGs from this perspective, it emerges as such initiatives can flourish also in those places where the lack of connection with the surrounding territory is counterbalanced by the high motivation to buy products from trusted suppliers who are able to guarantee genuine and safe products, not necessarily located nearby
Compressed correlation functions and fast aging dynamics in metallic glasses
We present x-ray photon correlation spectroscopy measurements of the atomic
dynamics in a Zr67Ni33 metallic glass, well below its glass transition
temperature. We find that the decay of the density fluctuations can be well
described by compressed, thus faster than exponential, correlation functions
which can be modeled by the well-known Kohlrausch-Williams-Watts function with
a shape exponent {\beta} larger than one. This parameter is furthermore found
to be independent of both waiting time and wave-vector, leading to the
possibility to rescale all the correlation functions to a single master curve.
The dynamics in the glassy state is additionally characterized by different
aging regimes which persist in the deep glassy state. These features seem to be
universal in metallic glasses and suggest a non diffusive nature of the
dynamics. This universality is supported by the possibility of describing the
fast increase of the structural relaxation time with waiting time using a
unique model function, independently of the microscopic details of the system.Comment: 7 pages, 4 figures. To be published in J. Chem. Phy
Rotation in galaxy clusters from MUSIC simulations with the kinetic Sunyaev-Zel'dovich effect
We propose in this work its application for the detection of possible coherent rotational motions in the hot intra-cluster medium. We select a sample of massive, relaxed and rotating galaxy clusters from Marenostrum-mUltidark SImulations of galaxy Clusters (MUSIC), and we produce mock maps of the temperature distortion produced by the kinetic Sunyaev-Zel'dovich effect by exploring six different lines of sight, in the best observational condition. These maps are compared with the expected signal computed from a suitable theoretical model in two cases: (i) focusing only on the contribution from the rotation, and (ii) accounting also for the cluster bulk motion. We find that the parameters of the model assumed for the radial profile of the rotational velocity, averaged over the considered lines of sight, are in agreement within two standard deviations at most with independent estimates from the simulation data, without being significantly affected by the presence of the cluster bulk term. The amplitude of the rotational signal is, on average, of the order of 23 per cent of the total signal accounting also for the cluster bulk motion, and its values are consistent with the literature. The projected bulk velocity of the cluster is also recovered at the different lines of sight, with values in agreement with the simulation dataASB acknowledges funding from Sapienza UniversitĂ di Roma - Progetti per Avvio alla Ricerca Anno 2017, prot. AR11715C82402BC
Comparative Evaluation of Packet Classification Algorithms for Implementation on Resource Constrained Systems
This paper provides a comparative evaluation of a number of known classification algorithms that have been considered for both software and hardware implementation. Differently from other sources, the comparison has been carried out on implementations based on the same principles and design choices. Performance measurements are obtained by feeding the implemented classifiers with various traffic traces in the same test scenario. The comparison also takes into account implementation feasibility of the considered algorithms in resource constrained systems (e.g. embedded processors on special purpose network platforms). In particular, the comparison focuses on achieving a good compromise between performance, memory usage, flexibility and code portability to different target platforms
Network Virtual Machine (NetVM): A New Architecture for Efficient and Portable Packet Processing Applications
A challenge facing network device designers, besides increasing the speed of network gear, is improving its programmability in order to simplify the implementation of new applications (see for example, active networks, content networking, etc). This paper presents our work on designing and implementing a virtual network processor, called NetVM, which has an instruction set optimized for packet processing applications, i.e., for handling network traffic. Similarly to a Java Virtual Machine that virtualizes a CPU, a NetVM virtualizes a network processor. The NetVM is expected to provide a compatibility layer for networking tasks (e.g., packet filtering, packet counting, string matching) performed by various packet processing applications (firewalls, network monitors, intrusion detectors) so that they can be executed on any network device, ranging from expensive routers to small appliances (e.g. smart phones). Moreover, the NetVM will provide efficient mapping of the elementary functionalities used to realize the above mentioned networking tasks upon specific hardware functional units (e.g., ASICs, FPGAs, and network processing elements) included in special purpose hardware systems possibly deployed to implement network devices
Optimizing packet capture on symmetric multiprocessing machines
Traffic monitoring and analysis based on general purpose systems with high speed interfaces, such as Gigabit Ethernet and 10 Gigabit Ethernet, requires carefully designed software in order to achieve the needed performance. One approach to attain such a performance relies on deploying multiple processors. This work analyses some general issues in multiprocessor systems that are particularly critical in the context of packet capture and network monitoring applications. More important, a new algorithm is proposed to coordinate multiple producers concurrently accessing a shared buffer, which is instrumental in packet capture on symmetrical multiprocessor machines
WinPcap: una libreria Open Source per l'analisi di rete
In questo articolo si presenta WinPcap, una libreria Open Source per l'analisi del traffico di rete sviluppata dal Computer Networks Group (NetGroup) presso il Politecnico di Torino. Tale libreria si e' affermata come standard de-facto nel settore degli strumenti di analisi di rete per ambienti Window
Profiling and optimization of software-based network-analysis applications
A large set of tools for network monitoring and accounting, security, traffic analysis and prediction - more broadly, for network operation and management - require direct and efficient real-time access to data traveling on the network. Software tools are often preferred because of their low cost and high versatility. However, these tools are often considered to suffer from performance problems on high-speed networks. We demonstrate that, despite the common belief, the performance limits for software real-time network analysis tools are still far from being reached and it can even be improved with limited hardware support. We analyze the performance of a widely used library for network analysis, WinPcap, highlight its bottlenecks, and propose some solutions that almost double the overall speed, thus enabling the deployment of software-based tools on high speed networks
LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes
This work presents a new code-based key encapsulation mechanism (KEM) called
LEDAkem. It is built on the Niederreiter cryptosystem and relies on
quasi-cyclic low-density parity-check codes as secret codes, providing high
decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known
statistical attacks, and takes advantage of a new decoding algorithm that
provides faster decoding than the classical bit-flipping decoder commonly
adopted in this kind of systems. The main attacks against LEDAkem are
investigated, taking into account quantum speedups. Some instances of LEDAkem
are designed to achieve different security levels against classical and quantum
computers. Some performance figures obtained through an efficient C99
implementation of LEDAkem are provided.Comment: 21 pages, 3 table
- âŠ