149 research outputs found

    Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS

    Get PDF
    Contains fulltext : 218233.pdf (Publisher’s version ) (Open Access)A sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of seven oral oncolytics (two PARP inhibitors, i.e. olaparib and niraparib, and five tyrosine kinase inhibitors, i.e. cobimetinib, cabozantinib, dabrafenib, vemurafenib and regorafenib, plus its active metabolite regorafenib M2) in EDTA plasma was developed and validated. Stable isotope-labelled internal standards were used for each analyte. A simple protein precipitation method was performed with acetonitrile. The LC-MS/MS system consisted of an Acquity H-Class UPLC system, coupled to a Xevo TQ-S micro tandem mass spectrometer. The compounds were separated on a Waters CORTECS UPLC C18 column (2.1 x 50 mm, 1.6 mum particle size) and eluted with a gradient elution system. The ions were detected in the multiple reaction monitoring mode. The method was validated for cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and regorafenib M2 over the ranges 6-1000, 100-5000, 10-4000, 200-2000, 200-20,000, 5000-100,000, 500-10,000 and 500-10,000 mug/L, respectively. Within-day accuracy values for all analytes ranged from 86.8 to 115.0% with a precision of <10.4%. Between-day accuracy values ranged between 89.7 and 111.9% with a between-day precision of <7.4%. The developed method was successfully used for guiding therapy with therapeutic drug monitoring in cancer patients and clinical research programs in our laboratory

    Hypolignification: a decisive factor in the development of hyperhydricity

    Get PDF
    One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH

    Dose recommendations for anticancer drugs in patients with renal or hepatic impairment

    Get PDF
    Renal or hepatic impairment is a common comorbidity for patients with cancer either because of the disease itself, toxicity of previous anticancer treatments, or because of other factors affecting organ function, such as increased age. Because renal and hepatic function are among the main determinants of drug exposure, the pharmacokinetic profile might be altered for patients with cancer who have renal or hepatic impairment, necessitating dose adjustments. Most anticancer drugs are dosed near their maximum tolerated dose and are characterised by a narrow therapeutic index. Consequently, selecting an adequate dose for patients who have either hepatic or renal impairment, or both, is challenging and definitive recommendations on dose adjustments are scarce. In this Review, we discuss the effect of renal and hepatic impairment on the pharmacokinetics of anticancer drugs. To guide clinicians in selecting appropriate dose adjustments, information from available drug labels and from the published literature were combined to provide a practical set of recommendations for dose adjustments of 160 anticancer drugs for patients with hepatic and renal impairment

    Exposure-toxicity relationship of cabozantinib in patients with renal cell cancer and salivary gland cancer

    Get PDF
    Cabozantinib is registered in fixed 60 mg dose. However, 46% to 62% of patients in the registration studies needed a dose reduction due to toxicity. Improved clinical efficacy has been observed in renal cell carcinoma patients (RCC) with a cabozantinib exposure greater than 750 μg/L. In our study we explored the cabozantinib exposure in patients with different tumour types. We included RCC patients from routine care and salivary gland carcinoma (SGC) patients from a phase II study with ≥1 measured C min at steady-state. The geometric mean (GM) C min at the starting dose, at 40 mg and at best tolerated dose (BTD) were compared between both tumour types. Forty-seven patients were included. All SGC patients (n = 22) started with 60 mg, while 52% of RCC patients started with 40 mg. GM C min at the start dose was 1456 μg/L (95% CI: 1185-1789) vs 682 μg/L (95% CI: 572-812) (P <.001) for SGC and RCC patients, respectively. When dose-normalised to 40 mg, SGC patients had a significantly higher cabozantinib exposure compared to RCC patients (C min 971 μg/L [95% CI: 790-1193] vs 669 μg/L [95% CI: 568-788]) (P =.005). Dose reductions due to toxicity were needed in 91% and 60% of SGC and RCC patients, respectively. Median BTD was between 20 to 30 mg for SGC and 40 mg for RCC patients. GM C min at BTD were comparable between the SGC and the RCC group, 694 μg/L (95% CI: 584-824) vs 583 μg/L (95% CI: 496-671) (P =.1). The observed cabozantinib exposure at BTD of approximately 600 μg/L is below the previously proposed target. Surprisingly, a comparable exposure at BTD was reached at different dosages of cabozantinib for SGC patients compared to RCC patients Further research is warranted to identify the optimal exposure and starting dose to balance efficacy and toxicity

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Pharmacokinetics and safety of cetuximab in a patient with renal dysfunction.

    Get PDF
    International audienceINTRODUCTION: In the literature, data on the effect of renal impairment on the pharmacokinetics of anticancer drugs are scarce. Here, we report a 68-year-old metastatic osteosarcoma patient with impaired renal function due to prior chemotherapy, who was treated on compassionate use basis with 400 mg/m(2) cetuximab. MATERIAL AND METHODS: Pharmacokinetic parameters after the first dose, including dose-normalised AUC from time zero to day 7, clearance, elimination half-life (t 1/2), were estimated using trapezoidal non-compartmental methods and compared to pharmacokinetic data from a study population with normal kidney function. RESULTS: The results showed that the pharmacokinetics of cetuximab in this patient with renal failure was similar to that with adequate renal function. CONCLUSION: This study suggests that cetuximab can be safely used in cancer patients with renal impairment without dose adjustment

    The impact of a 1-hour time interval between pazopanib and subsequent intake of gastric acid suppressants on pazopanib exposure

    Get PDF
    Co-treatment with gastric acid suppressants (GAS) in patients taking anticancer drugs that exhibit pH-dependant absorption may lead to decreased drug exposure and may hamper drug efficacy. In our study, we investigated whether a 1-hour time interval between subsequent intake of pazopanib and GAS could mitigate this negative effect on drug exposure. We performed an observational study in which we collected the first steady-state pazopanib trough concentration (C(min) ) levels from patients treated with pazopanib 800 mg once daily (OD) taken fasted or pazopanib 600 mg OD taken with food. All patients were advised to take GAS 1 hour after pazopanib. Patients were grouped based on the use of GAS and the geometric (GM) C(min) levels were compared between groups for each dose regimen. Additionally, the percentage of patients with exposure below the target threshold of 20.5 mg/L and the effect of the type of PPI was explored. The GM C(min) levels were lower in GAS users vs non-GAS users for both the 800 and 600 mg cohorts (23.7 mg/L [95% confidence interval [CI]: 21.1-26.7] vs 28.2 mg/L [95% CI: 25.9-30.5], P = .015 and 26.0 mg/L [95% CI: 22.4-30.3] vs 33.5 mg/L [95% CI: 30.3-37.1], P = .006). Subtherapeutic exposure was more prevalent in GAS users vs non-GAS users (33.3% vs 19.5% and 29.6% vs 14%). Sub-analysis showed lower GM pazopanib C(min) in patients who received omeprazole, while minimal difference was observed in those receiving pantoprazole compared to non-users. Our research showed that a 1-hour time interval between intake of pazopanib and GAS did not mitigate the negative effect of GAS on pazopanib exposure and may hamper pazopanib efficacy

    Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines

    Get PDF
    Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable

    Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

    Get PDF
    Background: Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. Methodology/Principal Findings: We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. Conclusions: We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocol
    corecore