2,776 research outputs found

    Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems

    Full text link
    We show how the onset of a non-Slater antiferromagnetic ordering in a correlated material can be detected by optical spectroscopy. Using dynamical mean-field theory we identify two distinctive features: The antiferromagnetic ordering is associated with an enhanced spectral weight above the optical gap, and well separated spin-polaron peaks emerge in the optical spectrum. Both features are indeed observed in LaSrMnO_4 [G\"ossling et al., Phys. Rev. B 77, 035109 (2008)]Comment: 11 pages, 9 figure

    Husimi coordinates of multipartite separable states

    Full text link
    A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.Comment: 19 pages, 1 figure, LaTe

    Heavy Fermion superconductor CeCu2_2Si2_2 under high pressure: multiprobing the valence crossover

    Full text link
    The first heavy fermion superconductor CeCu2_2Si2_2 has not revealed all its striking mysteries yet. At high pressures, superconductivity is supposed to be mediated by valence fluctuations, in contrast to ambient pressure, where spin fluctuations most likely act as pairing glue. We have carried out a multiprobe (electric transport, thermopower, ac specific heat, Hall and Nernst effects) experiment up to 7GPa7 \text{GPa} on a high quality CeCu2_2Si2_2 single crystal. Reliable resistivity data reveal for the first time a scaling behavior close to the supposed valence transition, and allow to locate the critical end point at 4.5±0.2GPa4.5\pm0.2 \text{GPa} and a slightly negative temperature. In the same pressure region, remarkable features have also been detected in the other physical properties, acting as further signatures of the Ce valence crossover and the associated critical fluctuations.Comment: 13 pages, 14 figure

    Nodal/Antinodal Dichotomy and the Two Gaps of a Superconducting Doped Mott Insulator

    Full text link
    We study the superconducting state of the hole-doped two-dimensional Hubbard model using Cellular Dynamical Mean Field Theory, with the Lanczos method as impurity solver. In the under-doped regime, we find a natural decomposition of the one-particle (photoemission) energy-gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.Comment: Corrected typos, 4.5 pages, 4 figure

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    Influence of the driving mechanism on the response of systems with athermal dynamics: the example of the random-field Ising model

    Get PDF
    We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local-mean field theory at finite temperature (but neglecting thermallly activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model (RFIM) when controlling either the external magnetic field HH or the extensive magnetization MM. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the HH-driven and MM-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the HH-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the MM-driven loop is re-entrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.Comment: 11 pages, 11 figure

    String tension in gonihedric 3D Ising models

    Get PDF
    For the 3D gonihedric Ising models defined by Savvidy and Wegner the bare string tension is zero and the energy of a spin interface depends only on the number of bends and self-intersections, in antithesis to the standard nearest-neighbour 3D Ising action. When the parameter kappa weighting the self-intersections is small the model has a first order transition and when it is larger the transition is continuous. In this paper we investigate the scaling of the renormalized string tension, which is entirely generated by fluctuations, using Monte Carlo simulations This allows us to obtain an estimate for the critical exponents alpha and nu using both finite-size-scaling and data collapse for the scaling function.Comment: Latex + postscript figures. 8 pages text plus 7 figures, spurious extra figure now removed

    Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions

    Full text link
    We study a two-band Hubbard model in the limit of infinite dimensions, using a combination of analytical methods and Monte-Carlo techniques. The normal state is found to display various metal to insulators transitions as a function of doping and interaction strength. We derive self-consistent equations for the local Green's functions in the presence of superconducting long-range order, and extend previous algorithms to this case. We present direct numerical evidence that in a specific range of parameter space, the normal state is unstable against a superconducting state characterized by a strongly frequency dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex, LPTENS Preprint 93/1

    Origin of the spectral linewidth in non linear oscillators based on MgO tunnel junctions

    Full text link
    We demonstrate the strong impact of the oscillator agility on the line broadening by studying spin transfer induced microwave emission in MgO-based tunnel junctions with current. The linewidth is almost not affected by decreasing the temperature. At very low currents, a strong enhancement of the linewidth at low temperature is attributed to an increase of the non linearity, probably due to the field-like torque. Finally we evidence that the noise is not dominated by thermal fluctuations but rather by the chaotization of the magnetization system induced by the spin transfer torque.Comment: 12 pages, 3 figures, published in Phys. Rev. B 80, 060404 (2009

    Isosbestic points in the spectral function of correlated electrons

    Full text link
    We investigate the properties of the spectral function A(omega,U) of correlated electrons within the Hubbard model and dynamical mean-field theory. Curves of A(omega,U) vs. omega for different values of the interaction U are found to intersect near the band-edges of the non-interacting system. For a wide range of U the crossing points are located within a sharply confined region. The precise location of these 'isosbestic points' depends on details of the non-interacting band structure. Isosbestic points of dynamic quantities therefore provide valuable insights into microscopic energy scales of correlated systems.Comment: 16 pages, 5 figure
    corecore