3,186 research outputs found
The star cluster survivability after gas expulsion is independent of the impact of the Galactic tidal field
We study the impact of the tidal field on the survivability of star clusters
following instantaneous gas expulsion. Our model clusters are formed with a
centrally-peaked star-formation efficiency profile as a result of
star-formation taking place with a constant efficiency per free-fall time. We
define the impact of the tidal field as the ratio of the cluster half-mass
radius to its Jacobi radius immediately after gas expulsion, . We vary by varying either the Galactocentric distance,
or the size (hence volume density) of star clusters.
We propose a new method to measure the violent relaxation duration, in which
we compare the total mass-loss rate of star clusters with their stellar
evolutionary mass-loss rate. That way, we can robustly estimate the bound mass
fraction of our model clusters at the end of violent relaxation. The duration
of violent relaxation correlates linearly with the Jacobi radius, when
considering identical clusters at different Galactocentric distances. In
contrast, it is nearly constant for the solar neighbourhood clusters, slightly
decreasing with . The violent relaxation does not last longer than 50
Myr in our simulations.
Identical model clusters placed at different Galactocentric distances have
the same final bound fraction, despite experiencing different impacts of the
tidal field. The solar neighbourhood clusters with different densities
experience only limited variations of their final bound fraction.
In general, we conclude that the cluster survivability after instantaneous
gas expulsion, as measured by their bound mass fraction at the end of violent
relaxation, , is independent of the impact of the tidal field,
.Comment: accepted for publication in MNRAS, 8 pages, 5 figures,3 table
Modulation of sterol homeostasis by the Cdc42p effectors Cla4p and Ste20p in the yeast Saccharomyces cerevisiae
This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Authors.The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis. CLA4 interacts genetically with ERG4 and NCP1. Furthermore, Erg4p, Ncp1p and Cbr1p play important roles in cell polarization during vegetative growth, mating and filamentation. As Ste20p and Cla4p are involved in these processes it seems likely that sterol biosynthetic enzymes and p21-activated kinases act in related pathways. Here, we demonstrate that the deletion of either STE20 or CLA4 results in increased levels of sterols. In addition, higher concentrations of steryl esters, the storage form of sterols, were observed in cla4Δ cells. CLA4 expression from a multicopy plasmid reduces enzyme activity of Are2p, the major steryl ester synthase, under aerobic conditions. Altogether, our data suggest that Ste20p and Cla4p may function as negative modulators of sterol biosynthesis. Moreover, Cla4p has a negative effect on steryl ester formation. As sterol homeostasis is crucial for cell polarization, Ste20p and Cla4p may regulate cell polarity in part through the modulation of sterol homeostasis.Deutsche Forschungsgemeinschaft and the Austrian FWF
Effects of anisotropy in a nonlinear crystal for squeezed vacuum generation
Squeezed vacuum (SV) can be obtained by an optical parametric amplifier (OPA)
with the quantum vacuum state at the input. We are interested in a degenerate
type-I OPA based on parametric down-conversion (PDC) where due to phase
matching requirements, an extraordinary polarized pump must impinge onto a
birefringent crystal with a large \chi(2) nonlinearity. As a consequence of the
optical anisotropy of the medium, the direction of propagation of the pump
wavevector does not coincide with the direction of propagation of its energy,
an effect known as transverse walk-off. For certain pump sizes and crystal
lengths, the transverse walk-off has a strong influence on the spatial spectrum
of the generated radiation, which in turn affects the outcome of any experiment
in which this radiation is employed. In this work we propose a method that
reduces the distortions of the two-photon amplitude (TPA) of the states
considered, by using at least two consecutive crystals instead of one. We show
that after anisotropy compensation the TPA becomes symmetric, allowing for a
simple Schmidt expansion, a procedure that in practice requires states that
come from experimental systems free of anisotropy effects
The X-ray Properties of the Most-Luminous Quasars from the Sloan Digital Sky Survey
Utilizing 21 new Chandra observations as well as archival Chandra, ROSAT, and
XMM-Newton data, we study the X-ray properties of a representative sample of 59
of the most optically luminous quasars in the Universe (M_i~~-29.3 to -30.2)
spanning a redshift range of z~~1.5-4.5. Our full sample consists of 32 quasars
from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3) quasar catalog,
two additional objects in the DR3 area that were missed by the SDSS selection
criteria, and 25 comparably luminous quasars at z>~4. This is the largest X-ray
study of such luminous quasars to date. By jointly fitting the X-ray spectra of
our sample quasars, excluding radio-loud and broad absorption line (BAL)
objects, we find a mean X-ray power-law photon index of
Gamma=1.92^{+0.09}_{-0.08} and constrain any neutral intrinsic absorbing
material to have a mean column density of N_H<~2x10^{21} cm^{-2}. We find,
consistent with other studies, that Gamma does not change with redshift, and we
constrain the amount of allowed Gamma evolution for the most-luminous quasars.
Our sample, excluding radio-loud and BAL quasars, has a mean X-ray-to-optical
spectral slope of a_ox=-1.80+/-0.02, as well as no significant evolution of
a_ox with redshift. We also comment upon the X-ray properties of a number of
notable quasars, including an X-ray weak quasar with several strong narrow
absorption-line systems, a mildly radio-loud BAL quasar, and a well-studied
gravitationally lensed quasar.Comment: 18 pages (emulateapj), 11 figures. Accepted for publication in The
Astrophysical Journa
Private API Access and Functional Mocking in Automated Unit Test Generation
Not all object oriented code is easily testable: Dependency objects might be difficult or even impossible to instantiate, and object-oriented encapsulation makes testing potentially simple code difficult if it cannot easily be accessed. When this happens, then developers can resort to mock objects that simulate the complex dependencies, or circumvent object-oriented encapsulation and access private APIs directly through the use of, for example, Java reflection. Can automated unit test generation benefit from these techniques as well? In this paper we investigate this question by extending the EvoSuite unit test generation tool with the ability to directly access private APIs and to create mock objects using the popular Mockito framework. However, care needs to be taken that this does not impact the usefulness of the generated tests: For example, a test accessing a private field could later fail if that field is renamed, even if that renaming is part of a semantics-preserving refactoring. Such a failure would not be revealing a true regression bug, but is a false positive, which wastes the developer's time for investigating and fixing the test. Our experiments on the SF110 and Defects4J benchmarks confirm the anticipated improvements in terms of code coverage and bug finding, but also confirm the existence of false positives. However, by ensuring the test generator only uses mocking and reflection if there is no other way to reach some part of the code, their number remains small
Selfconsistent Approximations in Mori's Theory
The constitutive quantities in Mori's theory, the residual forces, are
expanded in terms of time dependent correlation functions and products of
operators at , where it is assumed that the time derivatives of the
observables are given by products of them. As a first consequence the
Heisenberg dynamics of the observables are obtained as an expansion of the same
type. The dynamic equations for correlation functions result to be
selfconsistent nonlinear equations of the type known from mode-mode coupling
approximations. The approach yields a neccessary condition for the validity of
the presented equations. As a third consequence the static correlations can be
calculated from fluctuation-dissipation theorems, if the observables obey a Lie
algebra. For a simple spin model the convergence of the expansion is studied.
As a further test, dynamic and static correlations are calculated for a
Heisenberg ferromagnet at low temperatures, where the results are compared to
those of a Holstein Primakoff treatment.Comment: 51 pages, Latex, 3 eps figures included, elsart and epsf style files
included, also available at
http://athene.fkp.physik.th-darmstadt.de/public/wolfram.html and
ftp://athene.fkp.physik.th-darmstadt.de/pub/publications/wolfram
Dynamik der Radonfolgeprodukt-Aktivität imSpeichel nach therapeutischer Radon-Exposition
Radon decay product activity was measured in saliva of 10 male patients 20-30 min after a 1-hour radon exposure in the gallery of the Gasteiner Heilstollen (radon activity 36.2 kBq/m(3), radon progeny activity 20.3 kBq/m(3)), in 1 patient showing relatively high activity (75th percentile) measurements were continued until 65 min after exposure. Patients were asked to collect about 2 mi of saliva in the mouth and produce it on a filter. After drying the filter at 300 degrees C, radon progeny activity was measured. Activity (median) at 20-30 min after leaving the treatment area was 4.5 Bq (25th percentile 1 Bq; 75th percentile 21 Bq). In the patient who underwent additional measurements the activity showed a further increase up to 29 Bq (35 min after radon exposure) before it continuously decreased to a very low activity (1-3 Bq) at 65 min after exposure. The results show that a significantly increased radon decay product activity is found in saliva after speleotherapeutic radon exposure. Maximum values were observed 35 min after radon exposure. Radon decay product activity almost disappeared after about 1 h
Physical Processes in Star-Gas Systems
First we present a recently developed 3D chemodynamical code for galaxy
evolution from the K**2 collaboration. It follows the evolution of all
components of a galaxy such as dark matter, stars, molecular clouds and diffuse
interstellar matter (ISM). Dark matter and stars are treated as collisionless
N-body systems. The ISM is numerically described by a smoothed particle
hydrodynamics (SPH) approach for the diffuse (hot) gas and a sticky particle
scheme for the (cool) molecular clouds. Physical processs such as star
formation, stellar death or condensation and evaporation processes of clouds
interacting with the ISM are described locally. An example application of the
model to a star forming dwarf galaxy will be shown for comparison with other
codes. Secondly we will discuss new kinds of exotic chemodynamical processes,
as they occur in dense gas-star systems in galactic nuclei, such as
non-standard ``drag''-force interactions, destructive and gas producing stellar
collisions. Their implementation in 1D dynamical models of galactic nuclei is
presented. Future prospects to generalize these to 3D are work in progress and
will be discussed.Comment: 4 pages, 4 figures, "The 5th Workshop on Galactic Chemodynamics" -
Swinburne University (9-11 July 2003). To be published in the Publications of
the Astronomical Society of Australia in 2004 (B.K. Gibson and D. Kawata,
eds.). Accepted version, minor changes relative to origina
Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes
The double barrier resonant tunneling diode exhibits complex spatio-temporal
patterns including low-dimensional chaos when operated in an active external
circuit. We demonstrate how autosynchronization by time--delayed feedback
control can be used to select and stabilize specific current density patterns
in a noninvasive way. We compare the efficiency of different control schemes
involving feedback in either local spatial or global degrees of freedom. The
numerically obtained Floquet exponents are explained by analytical results from
linear stability analysis.Comment: 10 pages, 16 figure
Synchronization of coupled neural oscillators with heterogeneous delays
We investigate the effects of heterogeneous delays in the coupling of two
excitable neural systems. Depending upon the coupling strengths and the time
delays in the mutual and self-coupling, the compound system exhibits different
types of synchronized oscillations of variable period. We analyze this
synchronization based on the interplay of the different time delays and support
the numerical results by analytical findings. In addition, we elaborate on
bursting-like dynamics with two competing timescales on the basis of the
autocorrelation function.Comment: 18 pages, 14 figure
- …