3,726 research outputs found

    Table-lookup algorithm for pattern recognition: ELLTAB (Elliptical Table)

    Get PDF
    Remotely sensed unit is assigned to category by merely looking up its channel readings in four-dimensional table. Approach makes it possible to process multispectral scanner data using a minicomputer

    Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver

    Get PDF
    Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed

    What\u27s on First?: Organizing the Casebook and Molding the Mind

    Get PDF
    This study empirically tests the proposition that law students adopt different conceptions of the judge’s role in adjudication based on whether they first study intentional torts, negligence, or strict liability. The authors conducted an anonymous survey of more than 450 students enrolled in eight law schools at the beginning, mid-point, and end of the first semester of law school. The students were prompted to indicate to what extent they believed the judge’s role to be one of rule application and, conversely, to what extent it was one of considering social, economic, and ideological factors. The survey found that while all three groups of students shifted toward a belief that judges consider social, economic, and ideological factors, the degree of the shift differed in a statistically significant way depending on which torts their professors taught first. These differences persisted throughout the semester, even after they studied other torts. Further, these differences were observed even when the analysis controlled for law school ranking and were more pronounced among students attending the highest ranked schools. In interpreting the survey results, the authors employ sociologist Erving Goffman’s theory of “frame analysis” and the work of cognitive psychologists including Amos Tversky and Daniel Kahneman on “anchoring.” The Article concludes that the category of tort liability to which students are first exposed affects the “frame” or “lens” through which they view the judicial process. This frame becomes anchored and persists throughout the study of other tort categories. The lessons about the nature of the judging process learned implicitly through the professor’s choice of topic sequence may be even more important than the substantive topics themselves

    Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    Get PDF
    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way

    Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes

    Get PDF
    The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir(μ-acac-O,O,C^3)-(acac-O,O)_2]_2 and [R-Ir(acac-O,O)_2(L)] (R = acetylacetonato, CH_3, CH_2CH_3, Ph, or CH_2CH_2Ph, and L = H_2O or pyridine) Ir(III) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. ^(13)C-labelling studies with CH_3^(13)CH_2-Ir-Py showed that reversible β-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the ^(13)C-label from the α to β-positions was found to be slower than the C–H activation of benzene (and thus formation of ethane and Ph-d_5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and β-hydride elimination (k_(CH): k_β) of 0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)_2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C–H bond of an incoming benzene to generate the product and regenerate the catalyst

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    Proposal for an experimental test of the many-worlds interpretation of quantum mechanics

    Get PDF
    The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A procedure for ``interworld'' exchange of information and energy, using only state of the art quantum optical equipment, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, resulting in the formation of two parallel worlds. Depending on the outcome of this measurement the ion is excited from only one of the parallel worlds before the ion decoheres through its interaction with the environment. A detection of this excitation in the other parallel world is direct evidence for the many-worlds interpretation. This method could have important practical applications in physics and beyond.Comment: 17 pages, standard LaTex, no pictures, comments welcome, revised version corrects typing error in mixing tim

    Interfacial layering in a three-component polymer system

    Full text link
    We study theoretically the temporal evolution and the spatial structure of the interface between two polymer melts involving three different species (A, A* and B). The first melt is composed of two different polymer species A and A* which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The second melt is made of a pure polymer B which is strongly attracted to species A (chi_AB 0). We then show that, due to these contradictory tendencies, interesting properties arise during the evolution of the interface after the melts are put into contact: as diffusion proceeds, the interface structures into several adjacent "compartments", or layers, of differing chemical compositions, and in addition, the central mixing layer grows in a very asymmetric fashion. Such unusual behaviour might lead to interesting mechanical properties, and demonstrates on a specific case the potential richness of multi-component polymer interfaces (as compared to conventional two-component interfaces) for various applications.Comment: Revised version, to appear in Macromolecule

    Spatiotemporal distribution of phycotoxins and their co-occurrence within nearshore waters

    Get PDF
    Harmful algal blooms (HABs), varying in intensity and causative species, have historically occurred throughout the Chesapeake Bay, U.S.; however, phycotoxin data are sparse. The spatiotemporal distribution of phycotoxins was investigated using solid-phase adsorption toxin tracking (SPATT) across 12 shallow, nearshore sites within the lower Chesapeake Bay and Virginia\u27s coastal bays over one year (2017-2018). Eight toxins, azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), microcystin-LR (MC-LR), domoic acid (DA), okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), and goniodomin A (GDA) were detected in SPATT extracts. Temporally, phycotoxins were always present in the region, with at least one phycotoxin group (i.e., consisting of OA and DTX1) detected at every time point. Co-occurrence of phycotoxins was also common; two or more toxin groups were observed in 76% of the samples analyzed. Toxin maximums: 0.03 ng AZA2/g resin/day, 0.25 ng DA/g resin/day, 15 ng DTX1/g resin/day, 61 ng OA/g resin/day, 72 ng PTX2/g resin/day, and 102,050 ng GDA/g resin/day were seasonal, with peaks occurring in summer and fall. Spatially, the southern tributary and coastal bay regions harbored the highest amount of total phycotoxins on SPATT over the year, and the former contained the greatest diversity of phycotoxins. The novel detection of AZAs in the region, before a causative species has been identified, supports the use of SPATT as an explorative tool in respect to emerging threats. The lack of karlotoxin in SPATT extracts, but detection of Karlodinium veneficum by microscopy, however, emphasizes that this tool should be considered complementary to, but not a replacement for, more traditional HAB management and monitoring methods
    • …
    corecore