1,762 research outputs found

    Migration and the Employment and Wages of Native and Immigrant Workers

    Get PDF
    This paper assesses the association between migration (both international and internal) and the employment status and earnings of young noncollege-educated native white, black, Hispanic, Asian, and immigrant white-collar and blue-collar workers in the United States during the decade from 1980 to 1990. We seek to determine (1) whether internal and/or international migration contributed to the increased joblessness observed for blacks, Asians, and Hispanics in the 1980s, particularly among males, and (2) whether migration contributed to the decline in the hourly wages of both native and immigrant workers in the 1980s. We present results which only partly support the claim that internal migrants and immigrants are substitutes for native workers. On the one hand, we find that migration (flow) was not a major factor associated with the increased joblessness and decreased wages experienced by some native groups during the 1980s, particularly among blue-collar workers. On the other hand, we do find that changes in the foreign-born composition of an industrial sector (a measure of immigrant stock) were associated with increased joblessness of native workers and decreased joblessness of immigrant workers.

    Electron-magnon coupling and nonlinear tunneling transport in magnetic nanoparticles

    Get PDF
    We present a theory of single-electron tunneling transport through a ferromagnetic nanoparticle in which particle-hole excitations are coupled to spin collective modes. The model employed to describe the interaction between quasiparticles and collective excitations captures the salient features of a recent microscopic study. Our analysis of nonlinear quantum transport in the regime of weak coupling to the external electrodes is based on a rate-equation formalism for the nonequilibrium occupation probability of the nanoparticle many-body states. For strong electron-boson coupling, we find that the tunneling conductance as a function of bias voltage is characterized by a large and dense set of resonances. Their magnetic field dependence in the large-field regime is linear, with slopes of the same sign. Both features are in agreement with recent tunneling experiments.Comment: 4 pages, 2 figure

    Statistical mechanics in the context of special relativity

    Full text link
    In the present effort we show that Sκ=kBd3p(n1+κn1κ)/(2κ)S_{\kappa}=-k_B \int d^3p (n^{1+\kappa}-n^{1-\kappa})/(2\kappa) is the unique existing entropy obtained by a continuous deformation of the Shannon-Boltzmann entropy S0=kBd3pnlnnS_0=-k_B \int d^3p n \ln n and preserving unaltered its fundamental properties of concavity, additivity and extensivity. Subsequently, we explain the origin of the deformation mechanism introduced by κ\kappa and show that this deformation emerges naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self consistent scheme within the special relativity the values of the free parameter κ\kappa which results to depend on the light speed cc and reduces to zero as cc \to \infty recovering in this way the ordinary statistical mechanics and thermodynamics. The novel statistical mechanics constructed starting from the above entropy, preserves unaltered the mathematical and epistemological structure of the ordinary statistical mechanics and is suitable to describe a very large class of experimentally observed phenomena in low and high energy physics and in natural, economic and social sciences. Finally, in order to test the correctness and predictability of the theory, as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades in flux, finding a high quality agreement between our predictions and observed data. PACS number(s): 05.20.-y, 51.10.+y, 03.30.+p, 02.20.-aComment: 17 pages (two columns), 5 figures, RevTeX4, minor typing correction

    Strong-driving-assisted multipartite entanglement in cavity QED

    Get PDF
    We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It is even possible to produce entangled states involving different cavity modes. Tuning of parameters also permits us to switch from Jaynes-Cummings to anti-Jaynes-Cummings like interaction.Comment: Last version with minor changes and added references. Accepted for publication in Phys. Rev. Letter

    Illusory Decoherence

    Full text link
    If a quantum experiment includes random processes, then the results of repeated measurements can appear consistent with irreversible decoherence even if the system's evolution prior to measurement was reversible and unitary. Two thought experiments are constructed as examples.Comment: 10 pages, 3 figure

    Reconstruction of motional states of neutral atoms via MaxEnt principle

    Get PDF
    We present a scheme for a reconstruction of states of quantum systems from incomplete tomographic-like data. The proposed scheme is based on the Jaynes principle of Maximum Entropy. We apply our algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice

    Information Theory based on Non-additive Information Content

    Full text link
    We generalize the Shannon's information theory in a nonadditive way by focusing on the source coding theorem. The nonadditive information content we adopted is consistent with the concept of the form invariance structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are studied, in addition, the relation between the nonadditivity qq and the codeword length is pointed out.Comment: 9 pages, no figures, RevTex, accepted for publication in Phys. Rev. E(an error in proof of theorem 1 was corrected, typos corrected

    Bayesian Updating Rules in Continuous Opinion Dynamics Models

    Full text link
    In this article, I investigate the use of Bayesian updating rules applied to modeling social agents in the case of continuos opinions models. Given another agent statement about the continuous value of a variable xx, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a Uniform distribution. This represents the idea the other agent might have no idea about what he is talking about. The effect of updating only the first moments of the distribution will be studied. and we will see that this generates results similar to those of the Bounded Confidence models. By also updating the second moment, several different opinions always survive in the long run. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.Comment: 14 pages, 5 figures, presented at SigmaPhi200

    James van Allen and his namesake NASA mission

    Get PDF
    Abstract In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities

    Detailed balance has a counterpart in non-equilibrium steady states

    Full text link
    When modelling driven steady states of matter, it is common practice either to choose transition rates arbitrarily, or to assume that the principle of detailed balance remains valid away from equilibrium. Neither of those practices is theoretically well founded. Hypothesising ergodicity constrains the transition rates in driven steady states to respect relations analogous to, but different from the equilibrium principle of detailed balance. The constraints arise from demanding that the design of any model system contains no information extraneous to the microscopic laws of motion and the macroscopic observables. This prevents over-description of the non-equilibrium reservoir, and implies that not all stochastic equations of motion are equally valid. The resulting recipe for transition rates has many features in common with equilibrium statistical mechanics.Comment: Replaced with minor revisions to introduction and conclusions. Accepted for publication in Journal of Physics
    corecore