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We present a theory of single-electron tunneling transport through a ferromagnetic nanoparticle in
which particle-hole excitations are coupled to spin collective modes. The model employed to describe the
interaction between quasiparticles and collective excitations captures the salient features of a recent
microscopic study. Our analysis of nonlinear quantum transport in the regime of weak coupling to the
external electrodes is based on a rate-equation formalism for the nonequilibrium occupation probability of
the nanoparticle many-body states. For strong electron-boson coupling, we find that the tunneling con-
ductance as a function of bias voltage is characterized by a large and dense set of resonances. Their
magnetic field dependence in the large-field regime is linear, with slopes of the same sign. Both features
are in agreement with recent tunneling experiments.
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Metallic nanoparticles are among the best physical real-
izations of the concept of Fermi liquid introduced by
Landau more than 50 years ago. Their discrete low-energy
spectra can be put in a one-to-one correspondence with
those of corresponding noninteracting electron systems.
Single-electron tunneling spectroscopy [1] in normal-
metal nanograins provides a vivid example of Landau’s
enormous simplification of interacting Fermi systems.
Most of the interesting phenomena studied in these experi-
ments can indeed be understood in terms of the quantum
mechanics of confined noninteracting quasiparticles. If the
grain is made of a ferromagnetic transition-metal material,
however, the discrete resonant spectrum seen in tunneling
experiments [2,3] is far more complex than the one pre-
dicted in an independent particle picture, and indicates that
the quasiparticle states are coupled to the collective mag-
netic moment of the grain. Since ferromagnetic transition
metals, in addition to Landau’s particle-hole (p-h) excita-
tions, support low-energy collective spin excitations, it is
reasonable to assume that tunneling transport through fer-
romagnetic nanoparticles involves some kind of spin ex-
citations that are the finite-system analogue of the famil-
iar spin-waves or magnons of bulk ferromagnets. So far
attempts of including spin collective modes in tunnel-
ing transport based on a simple toy model [4–6] have
explained only in part the rich phenomena seen in
experiment.

In this Letter we present a theoretical study of single-
electron tunneling transport through a ferromagnetic metal
nanoparticle based on a model that captures the salient
features of its elementary excitations—p-h and spin col-
lective—as derived from a recent microscopic study [7]. A
few remarkable features seen in experiment emerge in a
very transparent and direct way from our treatment of the
electron-magnon coupling. We find that when a low-
energy p-h excitation is strongly coupled to one of the

spin collective modes, the tunneling differential conduc-
tance versus bias voltage displays an enhanced density of
resonances with spacings smaller than the independent-
electron energy mean-level spacing �. The dependence
of the tunneling resonances on external magnetic field is
regulated by the behavior of the underlying quasiparticle
states; it is characterized by mesoscopic fluctuations at
small fields and a monotonic dependence at fields larger
than the switching field. The model further predicts that in
the limit of ultrasmall nanoparticles, where � is much
larger than the typical magnon energy, the conductance
should display clusters of resonances separated by an
energy of order �.

The choice of our model is motivated by the microscopic
analysis of Ref. [7], where the explicit derivation of the
exchange-field-fluctuation propagator allows one to deter-
mine the elementary spin excitations (Stoner p-h and col-
lective) of a magnetic grain. One finds that for a small
nanoparticle there is one isolated spin collective mode
below the lowest p-h excitation energy, which corresponds
to the ferromagnetic resonance excitation (spatially uni-
form q � 0 spin wave), of energy Eres� magnetic anisot-
ropy energy=atom � 0:1 meV in cobalt. For large nano-
particles, the ferromagnetic resonance lies in a region of
p-h quasicontinuum and acquires a linewidth �Eres, where
�< 1 is the Gilbert damping parameter. The crossover
between these two regimes occurs when one p-h excitation
contributes to the resonance, namely, when � �

����
�
p

Eres.
Although the nanoparticles investigated in Ref. [2,3] are
too small to strictly satisfy this condition, interactions
between p-h excitations and spin-wave modes, including
the nonuniform ones (q � 0), will frequently occur. As
long as the mechanism of the interaction of one p-h exci-
tation with one spin-wave mode is independent on the
latter being uniform or nonuniform, we can illustrate it
by following Ref. [7], where the uniform case was consid-
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ered. It was shown that when only one p-h excitation of
energy �ab � �b � �a is close to Eres, the exchange-field
propagator has two poles at energies

 !� �
Eres � �ab

2
� f��Eres � �ab	=2
2 � �2g1=2: (1)

The avoided crossing gap � resulting from the collec-
tive mode p-h coupling is found to be �� �Eres �
�MF����

2S
p jhbjSxjaij, where 2S � N" � N# is the total spin of

the nanoparticle, and �MF is the amplitude of the spin-
splitting field. The presence of the matrix element
jhbjSxjaij in the expression for � emphasizes the fact
that the coupling between spin waves or magnon and
electrons is ultimately due to the exchange interaction,
which conserves spin. Thus the quasiparticle states a and
b should have opposite spins. In spite of the fact that most
of the states lying close to the Fermi level have minority-
spin character, because of spin-orbit coupling, the quasi-
particle states jIi are in fact linear combinations of spin-up
and spin-down components jIi � �Ij "i � �Ij #i, and the
matrix element jhbjSxjaij will not vanish. Notice, however,
that since spin-orbit interaction is relatively weak in
transition-metal ferromagnets, the quasiparticle states can
still be assumed to have in general one predominant spin
character with just a small admixture of the other.

The Hamiltonian describing the isolated nanoparticle in
which a magnon is coupled to one p-h excitation is

 Hd �
X
i�a;b

�ic
y
i ci �!�

y�� ��cyacb�
y � cybca�	

�Un̂�n̂� 1	; (2)

where cyi and ci with i � a, b are Fermi operators creating
and annihilating two electronic levels of energy �a and �b,
respectively, with �a < �b. The Bose operators �y and �
describe a magnon of energy !. Below we measure all
energies in units of the mean-level spacing � � �b � �a.
The term ��cyacb�y � c

y
bca�	 represents the electron-

magnon coupling. It can be interpreted as a vertex describ-
ing an electron scattering from the electronic state a (re-
spectively, b) to the state b (a), while absorbing (emitting)
a magnon. We will view the coupling strength � as a
phenomenological parameter; ��! represents strong
coupling. Recently, electron-boson interactions have been
used extensively to model electron-phonon coupling in
molecular single-electron transistors [8]. An interaction
term more similar to ours has been used in studying
magnon-assisted transport in ferromagnetic tunneling
junctions [9]. The last term in Eq. (2) represents a
Coulomb repulsion energy, which is nonzero when both
electronic levels are occupied, hn̂i � 2. The model in
Eq. (2), representing a double-level system coupled to
one boson mode, is well known in quantum optics and
cavity quantum electrodynamics under the name of the
Jaynes-Cummings model [10]. The model can be solved
exactly, since it conserves both the number of electrons

n � na � nb and the quantity �nb � na	=2�m, where m
is the number of bosons. In the trivial cases n � 0 and n �
2 the energy spectrum is �nm � !m� n=2��a � �b � 2U	;
the corresponding eigenstates are j0; mi � ��y	mj0i and
j2; mi � cyac

y
b ��

y	mj0i, where j0i is the vacuum. The n �
1; �nb � na	=2�m� 1=2 � k� 1 eigenspace is spanned
by the states

 j1a;k�1i�cya ��y	k�1j0i; j1b;ki�c
y
b ��

y	kj0i: (3)

The Hamiltonian is now diagonalized within each k sub-
space, yielding the eigenvalues ��k and ��k ,

 ��k � �0
k � �av �

1

2

�������������������������������������
�2

res � 4�2�k� 1	
q

; (4)

where �res � ��b � �a	 �! and �av �
1
2 ��a � �b �!	.

The corresponding eigenvectors are

 j�; ki � ��1 �k	j1a; k� 1i � ��2 �k	j1b; ki; (5)

where

 ��1 �k	 �
�

������������
k� 1
p

���������������������������������������������������������������������������
���k � �a �!�k� 1	
2 � �2�k� 1	

q ; (6)

 ��2 �k	 �
���k � �a �!�k� 1	
���������������������������������������������������������������������������

���k � �a �!�k� 1	
2 � �2�k� 1	
q : (7)

On top of these states j�; ki there is also the state j1a; 0i
with energy �a, which forms a decoupled one-dimensional
subspace in the n � 1 sector. We now assume that the
magnetic grain is weakly coupled to metallic external
electrodes and investigate single-electron tunneling trans-
port through the grain [1]. The total Hamiltonian describ-
ing the system is H � Hd �Hl �Hr �Ht, where Hd is
given in Eq. (2); Hl and Hr describe the left and right
electrodes, assumed to be normal Fermi liquids H� �P
p�p�c

y
p�cp�, � � l, r, where p is the quantum number

specifying a quasiparticle of energy �p� measured with
respect to the chemical potential of lead �; Ht is the
tunneling Hamiltonian coupling the grain to the electrodes
Ht �

P
p;��r;l�tp�c

y
p��ca � cb	 � H:c:
. In the limit of

weak coupling, transport takes place via sequential tunnel-
ing, which can be described by means of a standard rate-
equation formalism for the occupation probabilities of the
grain many-body states [11]. We are interested in the
regime where Coulomb blockade is first lifted by applying
an external bias voltage, and only the two charge states
n � 0, 1 are involved. The master equations describing the
kinetics of the nonequilibrium occupation probabilities
Pnk � fP

0
k; P

a
0 ; P

�
k ; P

�
k g for the states fj0; ki; j1a; 0i; j�; ki;

j�; ki; k � 0; 1; . . .g, are
 

_P0
k � �

X
k0;�

�2P0
k�W

�
0k;�k0 �W

�
0k;�k0 �W

�
0;a	

� P�k0W
�
�k0;0k � P

�
k0W

�
�k0;0k � P

a
0W

�
a;0
; (8)

 

_P a
0 � 2P0

0

X
�

W�
0;a � P

a
0

X
�

W�
a;0; (9)
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_P�k � �
X
k0;�

�P�k W
�
�k;0k0 � 2P0

k0W
�
0k0;�k
: (10)

The coefficients W�
... appearing in Eqs. (8)–(10) are tran-

sition rates between two many-body states of the grain
caused by electron tunneling from and to the leads. For
instance, W�

0k;�k0 is the transition rate from state j0; ki to
j�; k0i due to an electron tunneling from the � electrode
onto the grain. The W�

... are given by Fermi’s golden rule

 W�
0k;�k0 � ��0k;�k0nF��

�
k0 � �

0
k ���	��

�
1 �k

0	2�k0;k�1

� ��2 �k
0	2�k0;k
; (11)

 W�
0;a � ��0;anF��a ���	; (12)

where �� is the electrochemical potential of lead �, which
we assume to be shifted symmetrically around zero by the
applied bias voltage V: �l � ��r � V=2. The transition
rates W�

�k0;0k and W�
a;0 are obtained from W�

0k;�k0 and W�
0;a,

respectively, by replacing the Fermi function with �1� nF

evaluated at the same energy. The tunneling rates ��0k;�k0 �
2�
@

P
pjtp�j

2���p� � ���k0 � �k	
 will be taken for simplic-
ity to be independent of energy and lead index, ��0k;�k0 �

�. The nonequilibrium steady-state probability Pnk is the
solution of the matrix equation �M �P � 0, where the matrix
�M includes all the transition rates, and �P is a vector of all

the Pnk’s. The dc current through the left or right junction is
then written as
 

I���=�	e
�X
k

�
2P0

k

X
k0
�Wl=r

0k;�k0 �W
l=r
0k;�k0 	�P

�
k

X
k0
Wl=r
�k;0k0

�P�k
X
k0
Wl=r
�k;0k0

�
�2P0

0W
l=r
0;a�P

a
0W

l=r
a;0

�
: (13)

The transition sequence jn � 0i ! jn � 1i ! jn � 0i al-
lows the tunneling electron to probe the coupled p-h spin-
wave excitations of the grain, which appear as resonances
in the differential conductance dI=dV as a function of the
bias voltage V. We discuss first the case where the p-h
excitation is coupled with the uniform (q � 0) spin-wave
mode. For the nanoparticles considered in Refs. [2,3], ��
1 meV, while the energy of the uniform spin wave is
approximately equal to the anisotropy energy=atom�
0:1 meV. In Fig. 1 we plot I and dI=dV vs V for the
case ! � 0:1�, which pertains to this situation. The cal-
culations are done at temperature T � 0:005�, correspond-
ing to the experimental T � 50 mK. When � � !
[Fig. 1(a)], three sets of peaks in the conductance are
visible. The first isolated peak occurs when the current
starts to flow, and corresponds to the successive transitions
j0i ! j1a; 0i ! j0i which are possible when �l � V=2 �
�a [12]. On further increasing V, the current remains
constant until the next lowest charging state ��0 becomes
available (at eV � 6:8� for this case). For yet larger V
higher states j0; ki and j�; ki acquire a finite nonequilib-
rium occupation probability, and new transport channels
open up. In principle, each allowed transition j0; ki !

j�; ki gives a resonance at ��k � �
0
k, as shown in the inset

of Fig. 1(a), calculated at very low temperature, T �
0:001�. But at T � 0:005� only their envelope is visible
in the form of a small bump in the conductance centered at
eV � 6:9�. The third large peak, appearing at eV � 7:0�
is also the envelope of many closely spaced resonances,
caused primarily by the transitions through the second
group of charged states, j�; ki, which become available
at that energy. Although values of � >! are not very
realistic, it is instructive to study the limit behavior of the
tunneling conductance for large values of the magnon-
electron coupling. In Fig. 1(b) we plot I and dI=dV vs V
for � � 2!. We can see that a large � causes the sets of
resonances of Fig. 1(a) to merge into one cluster, whose
individual peaks now start to become visible also at T �
0:005�. Notice however, that the mean-level spacing be-
tween the peaks is � 0:05�, in fact much smaller than the
experimentally observed resonance spacing, 0:2�. This
leads us to conclude that such a large density of reso-
nances, caused by an unrealistically strong coupling to
the uniform spin-wave mode, is not the one observed
experimentally.

We now turn to the case where the p-h excitation is
coupled to a nonuniform spin-wave mode. The exchange
energy of the first nonuniform mode is !���a=R	2,
where � is proportional to the exchange constant, a is
the lattice constant, and R is the nanoparticle diameter.
For a 4-nm Co nanoparticle we find ! � 1 meV, which is
approximately equal to � [2]. In Fig. 2(a) we plot the IV
characteristics for the resonant case, ! � �, and two dif-
ferent values of �. At small � we have again two separate
sets of resonances, which are now perfectly resolvable
even at the experimental temperature. When � is increased
up to 0.8, the two sets of resonances merge into one cluster,
as shown in Fig. 2(b). The number of resonances in the
cluster is of the order of 15, with level spacing �0:3� �
0:3��b � �a	 � 0:3!. Such a dense set of resonances with
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FIG. 1 (color online). Current and differential conductance
versus bias voltage V for ! � 0:1�. (a) The electron-magnon
coupling strength is � � 0:1�; (b) � � 0:2�. The temperature T
is set equal to 0:005�, except in the inset, where it is equal to
0:001�.
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spacing � 0:2–0:5� is one of the characteristic features
observed experimentally in tunneling spectroscopy of
magnetic nanograins. The results of Fig. 2 do not de-
pend on ! being exactly equal to �, but remain valid for
� � !, although the larger! the larger is � that takes to go
from Fig. 2(a) and 2(b). For nanoparticles much smaller
than the ones considered in Refs. [2,3], when �
 !, our
model predicts that the conductance spectrum should even-
tually exhibit sets of resonances separated by an energy
�� / 1=R3.

We finally discuss the magnetic field dependence of the
resonance spectrum. A crucial feature of our analysis is
based on the assumption that the two bare electronic states
j1a; 0i and j1b; 0i have predominantly minority-spin char-
acter. The fact that minority electrons dominate the tunnel-
ing transitions had been originally predicted in Refs. [4,5]
and was later confirmed by experiments in gated devices
[3]. We consider first the regime of small external fields,
where the magnetic grain is close to a reversal of the
magnetic moment. The electronic states are coupled to
the moment itself, and as this moves under the effect of
the field, the energies of the states will be subject to
random fluctuations [13–15]. Also the frequency of the
ferromagnetic mode can fluctuate strongly [7]. Within our
model these fluctuations will result in a quasirandom
dependence of conductance resonances as a function of
the field. At larger fields, after the reversal has taken
place, the situation is different. The grain magnetic mo-
ment will point along the field and the energies of the
minority states j1a; 0i and j1b; 0i will increase linearly
with the field strength B, with a slope given by their
effective ga=b factors, which are � 2 since spin-orbit cou-
pling is weak. Similarly the spin-wave energy dependence
can be parameterized by !�B	 � !�0	 � g��BB [7]. We
obtain ��k � �

0
k � const� 1

2 �ga � gb � g� � ��B	
�BB
and ��k ��

0
k�1� const� 1

2�ga�gb�g����B	
�BB for

the resonance excitation energies, where ����������������������������������������������������������
�ga�gb�g�	

2�const=B2
q

. If we take ga=b � 2 and

g� � 2 [7], we find that the excitation energies are increas-
ing functions of B. Thus we conclude that the conductance
spectrum exhibits essentially a monotonic linear depen-
dence on the field, and the slopes of the resonance energies
have the same sign.

In conclusion, we have proposed a model that describes
coupled electron-magnon excitations in a ferromagnetic
metal nanoparticle. The conductance spectrum of single-
electron tunneling exhibits a broad and dense set of reso-
nances when the coupling is of the order of the magnon
energy. The resonant peaks show Zeeman shifts of the
same sign as a function of the external field. Both features
of the model are in agreement with experiment. We expect
that the resonances originate from the coupling to nonuni-
form spin waves; furthermore, the tunneling spectrum
should break into individual clusters for ultrasmall
particles.
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FIG. 2 (color online). Current and differential conductance
versus bias voltage V, for ! � �. (a) � � 0:3�; (b) � � 0:8�
The temperature T in both cases is set equal to 0:005�.
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