410 research outputs found
Analysis of a fully packed loop model arising in a magnetic Coulomb phase
The Coulomb phase of spin ice, and indeed the Ic phase of water ice,
naturally realise a fully-packed two-colour loop model in three dimensions. We
present a detailed analysis of the statistics of these loops, which avoid
themselves and other loops of the same colour, and contrast their behaviour to
an analogous two-dimensional model. The properties of another extended degree
of freedom are also addressed, flux lines of the emergent gauge field of the
Coulomb phase, which appear as "Dirac strings" in spin ice. We mention
implications of these results for related models, and experiments.Comment: 5 pages, 4 figure
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
At low temperatures, a spin ice enters a Coulomb phase - a state with
algebraic correlations and topologically constrained spin configurations. In
Ho2Ti2O7, we have observed experimentally that this process is accompanied by a
non-standard temperature evolution of the wave vector dependent magnetic
susceptibility, as measured by neutron scattering. Analytical and numerical
approaches reveal signatures of a crossover between two Curie laws, one
characterizing the high temperature paramagnetic regime, and the other the low
temperature topologically constrained regime, which we call the spin liquid
Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two
Curie laws appears to be a general property of the emergent gauge field for a
classical spin liquid, and ii) sheds light on the experimental difficulty of
measuring a precise Curie-Weiss temperature in frustrated materials; iii) the
mapping between gauge and spin degrees of freedom means that the susceptibility
at finite wave vector can be used as a local probe of fluctuations among
topological sectors.Comment: 10 pages, 5 figure
Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?
If magnetic frustration is most commonly known for undermining long-range
order, as famously illustrated by spin liquids, the ability of matter to
develop new collective mechanisms in order to fight frustration is no less
fascinating, providing an avenue for the exploration and discovery of
unconventional properties of matter. Here we study an ideal minimal model of
such mechanisms which, incidentally, pertains to the perplexing quantum spin
ice candidate Yb2Ti2O7. Specifically, we explain how thermal and quantum
fluctuations, optimized by order-by-disorder selection, conspire to expand the
stability region of an accidentally degenerate continuous symmetry U(1)
manifold against the classical splayed ferromagnetic ground state that is
displayed by the sister compound Yb2Sn2O7. The resulting competition gives rise
to multiple phase transitions, in striking similitude with recent experiments
on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering the
effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut
of numerical techniques, compelling evidence that such multiphase competition
is the long-sought missing key to understanding the intrinsic properties of
this material. As a corollary, our work offers a pertinent illustration of the
influence of chemical pressure in rare-earth pyrochlores.Comment: 9 page
Classical Topological Order in Kagome Ice
We examine the onset of classical topological order in a nearest-neighbor
kagome ice model. Using Monte Carlo simulations, we characterize the
topological sectors of the groundstate using a non-local cut measure which
circumscribes the toroidal geometry of the simulation cell. We demonstrate that
simulations which employ global loop updates that are allowed to wind around
the periodic boundaries cause the topological sector to fluctuate, while
restricted local loop updates freeze the simulation into one topological
sector. The freezing into one topological sector can also be observed in the
susceptibility of the real magnetic spin vectors projected onto the kagome
plane. The ability of the susceptibility to distinguish between fluctuating and
non-fluctuating topological sectors should motivate its use as a local probe of
topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure
Magnetic Monopole Dynamics in Spin Ice
One of the most remarkable examples of emergent quasi-particles, is that of
the "fractionalization" of magnetic dipoles in the low energy configurations of
materials known as "spin ice", into free and unconfined magnetic monopoles
interacting via Coulomb's 1/r law [Castelnovo et. al., Nature, 451, 42-45
(2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges
really does exist at low temperature in these materials and this discovery
provides a new perspective on otherwise largely inaccessible phenomenology. In
this paper, after a review of the different spin ice models, we present
detailed results describing the diffusive dynamics of monopole particles
starting both from the dipolar spin ice model and directly from a Coulomb gas
within the grand canonical ensemble. The diffusive quasi-particle dynamics of
real spin ice materials within "quantum tunneling" regime is modeled with
Metropolis dynamics, with the particles constrained to move along an underlying
network of oriented paths, which are classical analogues of the Dirac strings
connecting pairs of Dirac monopoles.Comment: 26 pages, 12 figure
Growth of a dynamical correlation length in an aging superspin glass
We report on zero field cooled magnetization relaxation experiments on a
concen- trated frozen ferrofluid exhibiting a low temperature superspin glass
transition. With a method initially developed for spin glasses, we investigate
the field dependence of the relaxations that take place after different aging
times. We extract the typical number of correlated spins involved in the aging
dynamics. This brings important insights into the dynamical correlation length
and its time growth. Our results, consistent with expressions obtained for spin
glasses, extend the generality of these behaviours to the class of superspin
glasses. Since the typical flipping time is much larger for superspins than for
atomic spins, our experiments probe a time regime much closer to that of
numerical simulations
Spin ice in a field: quasi-phases and pseudo-transitions
Thermodynamics of the short-range model of spin ice magnets in a field is
considered in the Bethe - Peierls approximation. The results obtained for
[111], [100] and [011] fields agrees reasonably well with the existing
Monte-Carlo simulations and some experiments. In this approximation all
extremely sharp field-induced anomalies are described by the analytical
functions of temperature and applied field. In spite of the absence of true
phase transitions the analysis of the entropy and specific heat reliefs over
H-T plane allows to discern the "pseudo-phases" with specific character of spin
fluctuations and define the lines of more or less sharp "pseudo-transitions"
between them.Comment: 18 pages, 16 figure
Fluctuations of two-time quantities and time-reparametrization invariance in spin-glasses
This article is a contribution to the understanding of fluctuations in the
out of equilibrium dynamics of glassy systems. By extending theoretical ideas
based on the assumption that time-reparametrization invariance develops
asymptotically we deduce the scaling properties of diverse high-order
correlation functions. We examine these predictions with numerical tests in a
standard glassy model, the 3d Edwards-Anderson spin-glass, and in a system
where time-reparametrization invariance is not expected to hold, the 2d
ferromagnetic Ising model, both at low temperatures. Our results enlighten a
qualitative difference between the fluctuation properties of the two models and
show that scaling properties conform to the time-reparametrization invariance
scenario in the former but not in the latter.Comment: 17 pages, 5 figure
Spin Dynamics at Very Low Temperature in Spin Ice DyTiO
We have performed AC susceptibility and DC magnetic relaxation measurements
on the spin ice system DyTiO down to 0.08 K. The relaxation time of
the magnetization has been estimated below 2 K down to 0.08 K. The spin
dynamics of DyTiO is well described by using two relaxation times
( (short time) and (long time)). Both and increase on cooling. Assuming the Arrhenius law in the
temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K,
both and show a clear deviation from the thermal
activated dynamics toward temperature independent relaxation, suggesting a
quantum dynamics.Comment: 4 page
Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7
In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2âxYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice
- âŠ