351 research outputs found

    Tissue Mimicking Materials for Multi-Modality Breast Phantoms

    Get PDF
    The paper proposes two different Tissue Mimicking Material (TMM) techniques for the development of breast phantoms which are suitable for multi-modality imaging. In particular, the focus is on the behavior of dielectric and acoustic properties when fat, sodium chloride and sugar are added to the mixtures

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Myc-binding Protein Orthologue Interacts with AKAP240 In the Central Pair Apparatus of the \u3cem\u3eChlamydomonas\u3c/em\u3e Flagella

    Get PDF
    Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list

    Take advantage of glutamine anaplerosis, the kernel of the metabolic rewiring in malignant gliomas

    Get PDF
    Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.publishersversionpublishe

    Metabolic Profiles Point Out Metabolic Pathways Pivotal in Two Glioblastoma (GBM) Cell Lines, U251 and U-87MG

    Get PDF
    Funding Information: The institutions are funded by Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES, Portugal) through national funds to iNOVA4Health (UIDB/04462/2020 and UIDP/04462/2020), to MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020), and the Associated Laboratory LS4FUTURE (LA/P/0087/2020). Filipa Martins was funded by an FCT individual Ph.D. fellowship (2020.04780.BD). Luis G. Gonçalves was financed by a FCT contract according to DL57/2016, (SFRH/BPD/111100/2015). This work benefited from access to CERMAX, ITQB-NOVA, Oeiras, Portugal with equipment funded by FCT, project AAC 01/SAICT/2016. Publisher Copyright: © 2023 by the authors.Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount of knowledge produced by research on cancer metabolism, its implementation in cancer treatment has been limited. In this study, we explored transcriptomics data from the TCGA database to provide new insights for future definition of metabolism-related patterns useful for clinical applications. Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate) in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with the impact of these organic compounds on malignancy cell features. GBM cell lines were able to adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the presence of glucose and were able to produce and consume lactate. Glutamine dependency was also highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point out metabolic pathways to be targeted in GBM and also reinforce that patients’ metabolic profiling can be useful in terms of personalized medicine.publishersversionpublishe

    Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    Get PDF
    An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL) and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL). 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine

    Data on the concentrations of etoposide, PSC833, BAPTA-AM, and cycloheximide that do not compromise the vitality of mature mouse oocytes, parthenogenetically activated and fertilized embryos

    Get PDF
    AbstractThese data document the vitality of mature mouse oocytes (Metaphase II (MII)) and early stage embryos (zygotes) following exposure to the genotoxic chemotherapeutic agent, etoposide, in combination with PSC833, a selective inhibitor of permeability glycoprotein. They also illustrate the vitality of parthenogenetically activated and fertilized embryos following incubation with the calcium chelator BAPTA-AM (1,2-Bis(2-aminophenoxy)ethane- N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester)), cycloheximide (an antibiotic that is capable of inhibiting protein synthesis), and hydrogen peroxide (a potent reactive oxygen species). Finally, they present evidence that permeability glycoprotein is not represented in the proteome of mouse spermatozoa. Our interpretation and discussion of these data feature in the article “Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes” (Martin et al., in press) [1]

    Seroprevalence of hantaviruses and Leptospira in muskrat and coypu trappers in the Netherlands, 2016.

    Get PDF
    Aims: Seoul orthohantavirus (SEOV) and Leptospira spp. are zoonotic pathogens with rats as main reservoir. Recently, the presence of SEOV in brown rats was reported in one region in the Netherlands. Brown rats are a frequent bycatch in traps placed to catch muskrats (Ondatra zibethicus) and coypus (Myocastor coypus), and thus are a potential health risk for trappers. It was our aim to determine the seroprevalence of orthohantavirus, specifically SEOV, and Leptospira spp in Dutch trappers. Methods and results: Participating trappers provided serum samples and completed an online questionnaire. The serum was tested for the presence of antibodies against six orthohantaviruses and eight Leptospira serovars. Two hundred-sixty trappers completed the online questionnaire (65%), and 246 (61%) and 162 (40%) serum samples were tested for relevant orthohantaviruses and Leptospira spp., respectively. The seroprevalence of Puumala orthohantavirus in Dutch trappers was 0.4% (95% CI: 0.1-2.3%). None of the participants tested positive for SEOV. The seroprevalence of leptospirosis was 1.2% (95% CI: 0.3-4.4%), although Leptospira spp. are present in brown rats in the Netherlands.Significance of study: The results indicate that the infections with orthohantaviruses and leptospires is low for muskrat and coypu trappers

    A Metabolic Signature to Monitor Endothelial Cell Differentiation, Activation, and Vascular Organization

    Get PDF
    Funding: The institutions are funded by Fundação para a Ciência e Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES, Portugal) through national funds to iNOVA4Health (UIDB/04462/2020 and UIDP/04462/2020), MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020), and the Associated Laboratory LS4FUTURE (LA/P/0087/2020). Filipa Lopes-Coelho’s fellowship was funded by FCT (PD/BD/128337/2017). Luis G. Gonçalves was financed by an FCT contract according to DL57/2016 (SFRH/BPD/111100/2015). This work benefited from access to CERMAX, ITQB NOVA, Oeiras, Portugal, with equipment funded by FCT, project AAC 01/SAICT/2016.The formation of new blood vessels is an important step in the morphogenesis and organization of tissues and organs; hence, the success of regenerative medicine procedures is highly dependent on angiogenesis control. Despite the biotechnological advances, tissue engineering is still a challenge. Regarding vascular network formation, the regulators are well known, yet the identification of markers is pivotal in order to improve the monitoring of the differentiation and proliferation of endothelial cells, as well as the establishment of a vascular network supporting tissue viability for an efficacious implantation. The metabolic profile accompanies the physiological stages of cells involved in angiogenesis, being a fruitful hub of biomarkers, whose levels can be easily retrieved. Through NMR spectroscopy, we identified branched amino acids, acetate, and formate as central biomarkers of monocyte-to-endothelial-cell differentiation and endothelial cell proliferation. This study reinforces the successful differentiation process of monocytes into endothelial cells, allowing self-to-self transplantation of patient-derived vascular networks, which is an important step in tissue engineering, since monocytes are easily isolated and autologous transplantation reduces the immune rejection events.publishersversionpublishe

    Beyond the conference: Singing our SSONG

    Get PDF
    The International Society for the Scholarship of Teaching and Learning (ISSOTL) annual conference presents an exciting opportunity to meet with international colleagues from diverse backgrounds and situations to commune on our common interest in the Scholarship of Teaching and Learning (SoTL). As with every ISSOTL conference, the enthusiasm for SoTL was palpable in Los Angeles in 2016. Rich discussions took place, networks were formed, and promises to keep in touch were made. Unfortunately, previous conference experiences have taught us that these good intentions often fall short once the conference bubble has burst and the reality of daily life sets in once more. In an attempt to circumvent this phenomenon, we—seven colleagues from three different countries—embarked on a research project that enabled us to maintain the relationships and fruitful discussions we had initiated at ISSOTL16. We established Small, Significant Online Network Group, or SSONG, inspired by a conference workshop on small significant networks. As a group, we met regularly online using Adobe Connect© and engaged in significant conversations around SoTL that were private, trustful, and intellectually intriguing. This article reflects our experiences in establishing and maintaining the group. We discuss how the group was formed; its alignment with the concept of small, significant networks; and the benefits and challenges we encountered. Four key principles of the group that have emerged will also be discussed in detail, enabling readers to consider how they could adapt the concept for their own purposes
    corecore