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Abstract: Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due
to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic
challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount
of knowledge produced by research on cancer metabolism, its implementation in cancer treatment
has been limited. In this study, we explored transcriptomics data from the TCGA database to provide
new insights for future definition of metabolism-related patterns useful for clinical applications.
Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate)
in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with
the impact of these organic compounds on malignancy cell features. GBM cell lines were able to
adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the
presence of glucose and were able to produce and consume lactate. Glutamine dependency was also
highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase
in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point
out metabolic pathways to be targeted in GBM and also reinforce that patients’ metabolic profiling
can be useful in terms of personalized medicine.

Keywords: glioblastoma; cancer metabolism; metabolic remodeling; metabolomics; gene expression
profiles

1. Introduction

Gliomas are the most common primary brain tumors, accounting for 24% of all central
nervous system (CNS) tumors [1]. The broad category of gliomas includes glioblastomas
(GBMs), high-grade tumors (WHO grade IV) that account for 14.2% of all CNS tumors
and 50.1% of all malignant CNS tumors [1]. GBM are highly lethal, mainly due to their
inaccessible localization in the brain, high proliferation rate, increased heterogeneity, and
infiltrative/invasive capacity [2]. According to the current glioma classification (WHO
2021), GBMs correspond to IDH-wild-type diffuse and astrocytic gliomas that present at
least one of the following features: microvascular proliferation, TERT promoter mutation,
EGFR gene amplification or 7+/10− chromosome copy number changes [3]. The previous
GBM classification included a broader group of tumors, such as IDH-mutant gliomas, which
corresponded to a median overall survival of 15 months [4,5]. With the new classification,
this narrower group includes only the most aggressive tumors, having a median overall
survival of 8 months, according to the latest statistical reports [1,6]. The current clinical
treatment involves a multidisciplinary approach, consisting of maximal tumor resection,
followed by adjuvant radiotherapy and chemotherapy (temozolomide, TMZ) [7]. However,
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complete surgical removal is not possible because of the high invasiveness degree, leading
to later disease progression or recurrence [8]. This has led to the search for new biomarkers
that could act as predictors of patient outcomes or treatment responses.

In the last years, cancer metabolism has acquired a central position in oncology
research, since metabolic adaptation is crucial to sustaining tumor growth [9]. In the case of
malignant gliomas, the glutaminergic cycle suffers a remodeling through the abrogation of
glutamine synthetase [10,11] and overexpression of glutamine transporters ASCT2 [12] and
SNAT3 [13]. Thus, these neoplasms present a phenotype of high glutamine dependence,
since they are unable to produce it, acting as ‘glutamine traps’ by importing glutamine
from the tumor microenvironment [2,14]. Nevertheless, these tumors are able to fully
metabolize glutamine, since they express glutaminase isoform 1 (GLS-1) [15], using this
amino acid as a carbon (C) and nitrogen (N) source [9,16,17]. Furthermore, GBM cells often
present increased glycolysis, including overexpression of glucose transporters GLUT1 and
GLUT3 [18–20] and lactate transporters MCT1 and MCT4 [21–23]. These adaptations may
reflect in the use of glucose for biosynthesis, while glutamine is used for bioenergetics,
acting as a glucose substitute [9].

Even though the amount of knowledge generated by cancer metabolism research
is increasing, its application to cancer therapy has been scarce. With this article, we
want to take advantage of the knowledge obtained from metabolic profiling, providing
insights for future definition of metabolic profiles useful for clinical applications. Here, we
investigated the metabolic and gene expression profiles of U251 and U-87MG GBM cell
lines when exposed to glucose, glutamine, glutamate, and lactate, and the impact of these
metabolites on cell features crucial for cancer progression, such as proliferation, migration,
and viability. Unraveling the metabolome with a sensitive and high-throughput technique
such as nuclear magnetic resonance (NMR) in combination with gene expression profiling
with qPCR allowed for the identification of metabolite variations and altered pathways,
providing insights into GBM biology and metabolic adaptive capacity.

2. Materials and Methods
2.1. GBM Patient Data Source

Data for GBM were extracted from the FireBrowse database (http://www.firebrowse.
org, accessed on 25 May 2023). The mRNA expression of several genes involved in GBM
metabolism in patients was explored in the GBM cohort of The Cancer Genome Atlas
(TCGA). Tumors were classified according to 2016 WHO CNS tumor classification [4],
which still includes IDH1 mutant high-grade gliomas as GBM. p-value lower than 0.05
denoted statistical significance.

2.2. Cell Culture

Two commercial GBM cell lines, U-87MG (HTB-14, American Type Culture Collec-
tion (ATCC)) and U251 (09063001, European Collection of Authenticated Cell Cultures
(ECACC)), were used and cultured in Dulbecco’s modified eagle medium F-12 (DMEM/F-
12; 11330-032, Gibco, Life Technologies, New York, NY, USA), supplemented with 10%
fetal bovine serum (FBS; P40-37500, PAN Biotech), 1% antibiotic–antimycotic (AA; P06-
07300, PAN Biotech, Aidenbach, Germany), and 50 µg/mL gentamicin (15750-060, Gibco,
Life Technologies). All cells were maintained in a humidified environment of 5% CO2
at 37 ◦C. Cells were cultured until an optical confluence of 75–100% and then detached
with 0.05% trypsin-EDTA 1× (25300-054, Invitrogen, Thermo Fisher Scientific, New York,
NY, USA) at 37 ◦C for approximately 5 min, and split to new plates according to the
experimental procedures.

http://www.firebrowse.org
http://www.firebrowse.org
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Before in vitro assays, cells were washed with phosphate buffer saline (PBS) 1×
and synchronized under starvation (culture medium without FBS) overnight. During
exposure to experimental conditions (24 h), cells were maintained in DMEM/F-12 without
L-glutamine, HEPES, and glucose (L0091-500, Biowest, Nuaillé, France), with 1% FBS.
Experimental conditions comprised 5 mM glucose (G8270, Sigma-Aldrich, New York, NY,
USA), 6 mM L-glutamine (25030-024, Gibco), 6 mM glutamate (6382-01-0, Sigma Aldrich),
and 10 mM sodium lactate (NaLac; 1.06522.2500, Merck, New York, NY, USA).

2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

Cells (2.6 × 107 cells/flask) were seeded in 175 cm2 culture flasks. After exposure
to experimental conditions, cells were harvested with PBS 1× (washed twice), scraped,
and centrifuged at 155× g for 10 min. Methanol and chloroform extraction was performed
to separate organic and aqueous phases. Cold methanol was added to the cell pellets
(4 mL methanol/1 g cell pellet), followed by water (twice the volume of methanol). After a
5 min incubation on ice, chloroform (1 vol) was added to the mixture, followed by water
(1 vol). The samples were incubated for 10 min on ice and centrifuged at 1700× g for
15 min at 4 ◦C. Both organic and aqueous phases were collected with a glass pipette and
stored at −20 ◦C until sample analysis. Chloroform extracts (organic phase, containing
insoluble water compounds) and methanol/water extracts (aqueous phase, containing
water-soluble compounds) were analyzed using 1H-NMR spectroscopy. Lyophilization
of both extracts was carried out using a SpeedVac Plus system and then organic samples
were dissolved in deuterated chloroform (CD3Cl) and aqueous sample in deuterated
water (D2O) with 0.16 mM 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP), as chemical
shift reference, and 82 mM potassium phosphate buffer (KPi pH 7.4). 1H-NMR spectra
of aqueous samples were obtained at 25 ◦C in a magnetic field of 800 MHz using an
UltrashieldTM 800 Plus Spectrometer (Bruker, Billerica, MA, USA) with a TCI cryoprobe,
using noesygppr1d pulse program. Organic sample spectra were acquired in a 500 MHz
magnetic field in the 500 UltraShieldTM Spectrometer (Bruker) using a 5 mm TCI-z Prodigy
cryoprobe (5 mm), using zg pulse program. TopSpin 4.0.7 software (Bruker) was used for
spectra acquisition and processing. Compound identification on aqueous samples’ spectra
was made by resorting to the Human Metabolome Database (HMDB; http://www.hmdb.
ca/, accessed on 24 April 2023), and Chenomx NMR Suite software version 8.1 (Chenomx
Inc., Edmonton, Canada), which was also used for metabolite quantification. Organic
spectra were processed using NMRProcFlow 1.4 software (nmrprocflow.org, accessed
on 1 June 2023), and bucket assignment to each functional group or lipidic constituent
was performed based on Amiel et al. 2019 [24]. Data analysis was performed using the
MetaboAnalyst 5.0 platform (https://www.metaboanalyst.ca/, accessed on 15 May 2023).

2.4. Reverse Transcription and Quantitative PCR (RT-qPCR)

Cells were seeded in 6-well plates (4 × 105 cells/well) and exposed to culture con-
ditions. Total RNA was extracted using the RNeasy Mini Extraction kit (74104, Qiagen,
Venlo, The Netherlands), according to the manufacturer’s protocol. cDNA was synthesized
from 1 µg RNA using SuperScript II Reverse Transcriptase (18080e44, Invitrogen, New
York, NY, USA), according to the manufacturer’s protocol. Relative quantification using
quantitative PCR (qPCR) was performed using SYBR Green PCR Master Mix (04707516001,
Roche, Basel, Switzerland), according to the manufacturer’s protocol. Real-time PCR was
carried out using a Lightcycler® 480 System instrument (05015243001, Roche). The primers
used are presented in Table 1.

http://www.hmdb.ca/
http://www.hmdb.ca/
nmrprocflow.org
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Table 1. List of primers used in RT-qPCR assays.

Gene Protein Primer Forward Primer Reverse

Glucose-dependent
pathways

HK2 HKII GGAGAGGGGACTTTGATATCG CGCATCTCTTCCATGTAGCAG

G6PD G6PD GGCAACAGATACAAGAACGTGAAG GCAGAAGACGTCCAGGATGAG

PDHA1 PDHA GCTAACCAGGGCCAGATATTC CTTGTAGTAATCAGTGCTGGC

SLC2A1 GLUT1 CACGGCCTTCACTGTCGTG GGACATCCAGGGTAGCTGC

SLC16A1 MCT1 GCTGGGCAGTGGTAATTGGA CAGTAATTGATTTGGGAAATGCA

SLC16A4 MCT4 CACAAGTTCTCCAGTGCCATTG CGCATCCAGGAGTTTGCCTC

Glutamine-
dependent
pathways

GLS GLS1 CTTCTACTTCCAGCTGTGCTC CACCAGTAATTGGGCAGAAACC

GLUL GLNS GAATGGTCTGAAGTACATCGAGG GTTAGACGTCGGGCATTGTC

SLC1A2 GLT-1 GGGATGAACGTCTTAGGTCTG GGGGAGAGTACCACATGATC

SLC1A3 GLAST CACCGCTGTCATTGTGGGTAC CCGCCATTCCTGTGACAAG

SLC7A5 LAT1 CATCCTCCAGGCTCTTCTTC CGTCATCACACACGTGAACAC

SLC38A1 SNAT1 CATTCTATGACAACGTGCAGTCC CAGCAACAATGACAGCCAGC

SLC38A2 SNAT2 CTGAGCAATGCGATTGTGGG CTCCTTCATTGGCAGTCTTC

SLC38A3 SNAT3 CACAGACAGCATACACCATCC GACAGGTTGGAGATGTGCTGC

Acetoacetate
metabolism

OXCT1 SCOT GGCCGCTCTTGAGTTTGAGG CGTGGATATGGACCCAAACC

ACAT1 ACAT1 GTATTGGGTGCAGGCTTACC CATTGGACATGCTCTCCATCC

Lipid
metabolism

ACADS SCAD CCCTCGATTGTGCTGTGAAC GCCAACTTGAACTGGATGACC

ACADM MCAD GCTACTTGTAGAGCACCAAGC CCAAGCTGCTCTCTGGTAAC

FASN FAS GCTCGGCATGGCTATCTTC GGAACACCGTGCACTTGAGG

Housekeeping HPRT HPRT TGACACTGGCAAAACAATGCA GGTCGTTTTTCACCAGCAAGCT

2.5. Cell Death Analysis Using Flow Cytometry

To analyze the effects of the experimental conditions on cell viability, GBM cell lines
were seeded in 24-well plates (1 × 105 cells/well). After a 24 h exposure to experimental
conditions, the supernatant was collected, and adherent cells were detached with 0.05%
trypsin-EDTA. Cells and supernatant were collected in the same tube and centrifuged at
155× g for 3 min. Then, cell pellets were incubated with 0.5 µL annexin V-fluorescein
isothiocyanate (annexin V-FITC; 640906, BioLegend, San Diego, CA, USA), in annexin V
binding buffer 1× (10 mM HEPES (pH 7.4; 391333, Millipore, New York, NY, USA), 140 mM
sodium chloride (NaCl; 106404, Merck), 2.5 mM calcium chloride (CaCl2; 449709, Sigma-
Aldrich) for 15 min in the dark at room temperature. Cells were resuspended in 200 µL
PBS 1×/0.1% (v/w) bovine serum albumin (BSA; A9647, Sigma-Aldrich) and centrifuged
at 155× g for 2 min. The remaining pellets were resuspended in annexin V binding buffer
1× and 2.5 µL of 50 µg/mL propidium iodide (PI; P4170, Sigma-Aldrich). Samples were
analyzed using flow cytometry in a FACScalibur (Becton Dickinson, Franklin Lakes, NJ,
USA) and data were treated using FlowJo X 10.0.7 (http://flowjo.com, accessed on 5 June
2023) software.

2.6. Cell Proliferation Assay

Cells were seeded in 24-well plates (5 × 104 cells/well) and, after being exposed to
experimental conditions, were collected at 0, 6, 12, 24, 32, and 48 h. The cell number per
mL was calculated using a Bürker counting chamber and cell viability was determined
using 0.4% (w/v) trypan blue stain (15250-061, Gibco) at a ratio of 1:5. Three replicates were
analyzed for each cell line and experimental condition.

http://flowjo.com
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2.7. Wound Healing Assay

Cells were seeded in 24-well plates (1 × 105 cells/well). At 90% of confluency, cells
incubated for 3 h with 5 µg/mL mitomycin-C (M4287, Sigma) to inhibit cell proliferation.
A linear scratch across the well diameter was made with a P200 pipette tip, the media were
replaced to remove debris and cells in suspension and the experimental conditions were
applied. Bright field images of each well were acquired using an Olympus IX53 Inverted
Microscope until 48 h. The wound closure was quantified using ImageJ software, version
Java 8 (imagej.nih.gov/ij/, accessed on 10 June 2023).

2.8. Statistical Analysis

For patients’ mRNA seq data analysis, one-way ANOVA was used to compare the
three groups, with the nonparametric Kruskal–Wallis test, since the populations did not
have a normal distribution (Table S1). Differences were determined statistically significant
at p-value < 0.05.

MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/, accessed on 25 May 2023), online
platform was used for NMR bioinformatic analyses. This software was used for both
multivariate and univariate statistical analyses. Samples were normalized by sample weight
and, for the multivariate analysis, the metabolite concentrations were scaled by autoscaling.
Multivariate analysis involved principal component analysis (PCA), an unsupervised
method to assess variance between samples and their clustering. PCA, heatmaps, and t-test
plots were generated using the same platform.

For the other experiments, all data were analyzed using Student’s t-test, one-way
ANOVA, or two-way ANOVA in GraphPad Prism v9 software (www.graphpad.com/,
accessed on 13 June 2023). The assays were performed with at least 3 biological replicates
per condition and the differences were determined statistically significant at p-value < 0.05.

3. Results
3.1. The Expression of Metabolic Key Genes Is Altered in Glioblastoma (GBM) Specimens

To understand how GBM affects the expression of several genes involved in important
metabolic pathways, mRNA seq data from 171 patients’ samples was extracted from the
GBM TCGA cohort. These corresponded to three sample types: normal tissue (5 samples),
primary tumor (153 samples), and recurrent tumor (13 samples). These GBM samples
were classified according to the 2016 WHO CNS tumor classification [4]. A different
gene expression profile was observed when comparing normal tissue with primary and
recurrent tumors (Figure 1A). Genes related to glutamine and glutamate transport were
differently expressed: decreased glutamate transporter GLT-1 gene (SLC1A2) (Figure 1B),
increased SLC1A5 gene encoding the glutamine transporter ASCT2 (Figure 1C), decreased
GLS and GLS2 genes encoding for two glutaminase isoforms (Figure 1D,E, respectively),
and decreased SLC1A1 gene encoding the glutamate and cysteine transporter EAAT3
(Figure 1F) in primary tumor. Regarding fatty acid metabolism, there was decreased fatty
acid synthase gene FASN (Figure 1G); increased ACADM gene encoding the medium-chain
acyl-coenzyme A dehydrogenase (Figure 1H); decreased SLC27A2 gene encoding fatty acid
transporter 2, FATP2 (Figure 1I); increased SLC27A3 gene encoding the fatty acid transporter
3, FATP3 (Figure 1J); decreased SLC27A4 gene encoding the fatty acid transporter 4, FATP4
(Figure 1K); increased FABP7 gene encoding brain fatty acid-binding protein B-FABP
(Figure 1L); and increased CD36 gene encoding the fatty acid translocase FAT (Figure 1M).
Regarding glycolysis, we observed increased hexokinase II gene, HK2 (Figure 1G); increased
monocarboxylate transporter genes, SLC16A1 encoding MCT1 (Figure 1H) and SLC16A4
encoding MCT4 (Figure 1I); decreased pyruvate dehydrogenase gene, PDHA (Figure 1J);
increased lactate dehydrogenase A gene, LDHA (Figure 1K); and decreased pyruvate
carboxylase gene, PC (Figure 1S). Considering the IDH1 mutational status, a significant
increase in FASN expression in IDH1 mutated primary tumors was observed compared
to IDH1 wild-type (wt) tumors (Figure 1T). The expression of other genes associated with
these pathways can be found in Supplementary Figure S1.

imagej.nih.gov/ij/
http://www.metaboanalyst.ca/
www.graphpad.com/
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SLC1A5 (C), decreased glutaminase GLS (D) and GLS2 (E), decreased glutamate and cysteine trans-
porter SLC1A1 (F), decreased fatty acid synthase FASN (G), increased medium-chain acyl-coenzyme
A dehydrogenase ACADM (H), decreased fatty acid transporter 2 SLC27A2 (I), increased fatty acid
transporter 3 SLC27A3 (J), decreased fatty acid transporter 4 SLC27A4 (K), decreased brain fatty
acid-binding protein FABP7 (L), increased fatty acid translocase CD36 (M), increased hexokinase II
HK2 (N), increased monocarboxylate transporters SLC16A1 (O) and SLC16A4 (P), decreased pyruvate
dehydrogenase PDHA (Q), increased lactate dehydrogenase A LDHA (R) and decreased pyruvate
carboxylase PC (S). Fatty acid synthase expression according to IDH1 mutational status (T). All data
are represented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, Kruskal-Wallis test. # p < 0.05,
## p < 0.01, Mann-Whitney test.

3.2. Glucose, Lactate, Glutamine, and Glutamate Bioavailability Impacts the Expression Profile of
Metabolic Key Genes in GBM Cell Lines Differently

Since glucose- and glutamine-related pathways are affected in primary GBM, we
investigated the impact of glucose, lactate, glutamine, and glutamate as carbon sources
in the expression of metabolic key genes in the two GBM cell lines. Control conditions
were considered cell-cultured without supplementation of glucose, lactate, glutamine, and
glutamate. We assessed the expression of genes related to glucose-dependent pathways
(glycolysis, pentose phosphate pathway (PPP), and gluconeogenesis), glutamine and gluta-
mate metabolism and transport, lipid metabolism (FA synthesis, β-oxidation, and ketone
body production), and transport. GBM cell lines displayed different expression profiles of
metabolic genes in response to the exposure to each carbon source (Figure 2A,F).

U251 cell line exposed to glucose presented a similar expression profile when compared
to the control condition (in the absence of glucose and glutamine for 24 h) (Figure 2B–E),
while U-87MG cells decreased the expression of genes encoding glycolytic enzymes (HK2
and tendency to decrease PDH1A) and the pentose phosphate pathway (PPP)-related gene
G6PD (Figure 2G). Regarding glutamine metabolism-related genes, the presence of glu-
cose decreased the expression of genes encoding glutamine synthetase (GLUL), glutamate
transporters (SLC1A2 and SLC1A3), and glutamine transporters (SLC7A5, SLC38A1, and
SLC38A2) (Figure 2H). A decreased expression of FASN, ACAT1 (acetyl–CoA acetyltrans-
ferase 1), ACADS, ACADM, and SLC27A1 genes was also observed, encoding, respectively,
fatty acid synthase, acetyl–CoA acetyltransferase 1, and short- and medium-chain acyl-CoA
dehydrogenases (Figure 2I,J).

U251 cells, exposed to lactate, increased G6PD and SLC2A1 expression, which encodes
for the glucose transporter 1, GLUT1 (Figure 2B), as well as the expression of genes related to
glutamine and glutamate metabolism, namely GLS (glutaminase) and GLUL, and SLC1A3,
SLC38A2, and SLC38A3 genes encoding transporters (Figure 2C), as well as FASN expression
(Figure 2E). Regarding the expression of genes encoding enzymes involved in ketone body
metabolism, lactate decreased the expression of OXCT1 (3-oxoacid CoA-transferase 1) and
ACAT1 (Figure 2D). U-87MG cells, exposed to lactate, decreased the expression of HK2
(Figure 2G) and the expression of β-oxidation genes ACADS and ACADM (Figure 2J), while
G6PD expression increased, as well as the expression of genes related to glutamine and
glutamate metabolism (Figure 2H).

U251 cells, exposed to glutamine, increased FASN expression (Figure 2E). U-87MG
cells, exposed to glutamine, decreased the expression of genes related to glutamate and
glutamine transport (Figure 2H), as well as to fatty acid β-oxidation (Figure 2J).

U251 cells, exposed to glutamate, increased FASN expression (Figure 2E). U-87MG
cells exposed to glutamate decreased the expression of HK2 (Figure 2G), of genes encoding
glutamate transporters (Figure 2H), and of ACAT1 and ACADM (Figure 2J).
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Figure 2. GBM cell lines show different gene expression profiles in the presence of key metabolites:
glucose, glutamine, glutamate and lactate. U251 (A–E) and U-87MG (F–J) cell lines present distinct
gene expression profiles according to the metabolite to which they were exposed. Genes from several
metabolic pathways were assessed: glucose, pyruvate, and lactate metabolism (B,G); glutamine and
glutamate metabolism (C,H); ketone body metabolism (D,I); and fatty acid metabolism (E,J). All
data were normalized to the glucose sample and represented as mean ± SD. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

3.3. Glucose, Lactate, Glutamine, and Glutamate Bioavailability Impact the Metabolic Profiles of
GBM Cell Lines Differently

To assess the effect of the different carbon sources (glucose, lactate, glutamine, or
glutamate) on the metabolic profile of these two GBM cell lines, the aqueous (Figure S2)
and organic phases (Figure S3) of cell extracts were analyzed using 1H-NMR spectroscopy.
The aqueous metabolic profiles of both cell lines are affected differently by these compounds
(Figures 3A and 4A).
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Figure 3. Impact on the levels of metabolites in U251. Metabolite levels obtained from 1H-NMR
spectra of aqueous phase of U251 cell extracts (heatmap: (A)) are divided into several groups:
essential amino acids (B), BCAA synthesis/degradation pathway (C), non/semiessential amino acids
(D), fatty acid and phospholipid synthesis (E), nucleotides and derivatives (F), glycolysis and TCA
cycle (G), glutathione (GSH) synthesis (H), one-carbon metabolism (I), and other metabolites that
did not fit in the previous groups (J). Organic compounds obtained from 1H-NMR spectra of organic
phase of U251 cell extracts (K): –CH=CH– (unsaturated FA: UFA), glycerol from triacylglycerol (Gly),
phosphatidylcholine (PhCho), –CH=CH–CH2–CH=CH– (polyunsaturated FA: PUFA), fatty acids
(FA), CH2 and CH3 from FA elongation, esterified cholesterol (ChoE), free cholesterol (ChoF), and
total cholesterol (ChoT). All data are represented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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Figure 4. Impact on the levels of metabolites in U-87MG. Metabolite levels obtained from 1H-NMR
spectra of aqueous phase of U-87MG cell extracts (heatmap: (A)) are divided into several groups:
essential amino acids (B), BCAA synthesis/degradation pathway (C), non/semiessential amino acids
(D), fatty acid and phospholipid synthesis (E), nucleotides and derivatives (F), glycolysis and TCA
cycle (G), glutathione (GSH) synthesis (H), one-carbon metabolism (I), and other metabolites that did
not fit in the previous groups (J). Organic compounds obtained from 1H-NMR spectra of organic phase
of U-87MG cell extracts (K): –CH=CH– (unsaturated FA: UFA), glycerol from triacylglycerol (Gly),
phosphatidylcholine (PhCho), –CH=CH–CH2–CH=CH– (polyunsaturated FA: PUFA), fatty acids
(FA), CH2 and CH3 from FA elongation, esterified cholesterol (ChoE), free cholesterol (ChoF), and
total cholesterol (ChoT). All data are represented as mean ± SD. * p < 0.05, ** p < 0.01, **** p < 0.0001.
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U251 cells, exposed to glucose, presented increased levels of lactate, succinate (Figure 3G),
uracil, and uridine (Figure 3F), while U-87MG cells increased the levels of glucose, lactate
(Figure 4G), leucine, alanine, and glutamine (Figure 4B,D).

In the presence of lactate, U251 cells increased the levels of lactate (Figure 3G) and de-
creased the concentrations of amino acids (Figure 3B,D,J), malonate, and o-phosphocholine
(Figure 3E), while U-87MG cells decreased the levels of amino acids (Figure 4B,D), sn-
glycero-3-phosphocholine, and myo-inositol (Figure 4E).

U251 cells, exposed to glutamine, increased levels of several amino acids (Figure 3B,D)
and glucose (Figure 3G), while o-phosphocholine levels were decreased (Figure 3E). U-
87MG cells increased glutamine levels, and decreased levels of other amino acids
(Figure 4B,D), o-phosphocholine, and sn-glycero-3-phosphocholine (Figure 4E).

U251 cells, exposed to glutamate, increased the concentration of amino acids
(Figure 3B,D), concomitant with decreased levels of 3-hydroxyisovalerate (Figure 3C),
while increasing intracellular glutamate levels in U-87MG cells (Figure 4D), and decreasing
the levels of amino acids (Figure 4B), o-phosphocholine, and sn-glycero-3-phosphocholine
(Figure 4E).

Regarding the spectra of organic phases, there were no significant changes in the lipids
identified in the organic fraction among conditions in both cell lines (Figures 3K and 4K).
The only exception was phosphatidylcholine in U251 cells (Figure 3K). This lipid constituent
increased after glutamine and glutamate exposure.

3.4. U251 and U-87MG GBM Cell Lines Are Metabolically Different and upon Exposure to
Glucose, Lactate, Glutamine, and Glutamate, the Differences Are Emphasized, Suggesting Different
Adaptive Pathways

To better clarify the difference between each cell line, we performed a multivariate
analysis, in which we compared the metabolic profile of each cell line after exposure to each
key organic compound. Initially, we observed that at the basal level (cells cultured in control
conditions, meaning not exposed to glucose or glutamine) there was a separation of two
populations (Figure 5A), with significantly increased glutathione, uracil, uridine, and myo-
inositol levels in U251 compared to U-87MG (Figure 5C). Upon exposure to glucose, lactate,
glutamine, and glutamate, the separation of the two cell lines as independent populations
was maintained (Figure 5C,E,G,I) due to differential modulation by the different metabolites.
In the case of glutamine (Figure 5G), the clustering of the two cell lines is not so clear on the
PCA due to the high variance in the U251 cell line. Upon exposure to glucose, elevated levels
of creatine and uridine were found in U251, while U-87MG presented high levels of acetate
(Figure 5B). In the presence of lactate, U251 presented higher levels of adenine, alanine,
caprate, formate, uracil, and uridine, while U-87MG presented higher succinate levels
(Figure 5F). Upon exposure to glutamine, U251 cells presented higher levels of adenine,
glycolate, uracil, and myo-inositol compared to U-87MG (Figure 5H). In U251, glutamate
induced higher levels of AMP, adenine, alanine, NADP+, pantothenate, phenylalanine,
threonine, and uracil, while in U-87MG it increased the levels of leucine, succinate, and
valine (Figure 5J).
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profiles of aqueous samples. The number of metabolites identified was 50 and 44 in U251 and
U-87MG, respectively. Principal component analysis (PCA) score plots (A,C,E,G,I) and t-test plots
(B,D,F,H,J) of extracts of cells in basal conditions and exposed to glucose, lactate, glutamine, and
glutamate, respectively. Metabolites significantly increased in U251 are in red, while metabolites
increased in U-87MG are in blue.

3.5. Glucose, Glutamine, and Glutamate Increase Migration, and Lactate Tends to Decrease
Proliferation in GBM Cell Lines

In order to obtain some information on the way the carbon source and metabolic
adaptation can impact disease progression, we assessed the effect of glucose, lactate,
glutamine, and glutamate on cell features, namely proliferation, cell death/viability, and
migration, which are abilities considered crucial for cancer progression. No significant
differences were observed with glucose, glutamine, and glutamate (Figure 6A,B). Only
lactate affected cell proliferation by significantly decreasing U251 cell number (Figure 6A)
and inducing a tendency to decrease U-87MG cell number (Figure 6B).
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Figure 6. Impact of metabolites in cell features crucial for cancer progression. Features assessed in
GBM cell lines: proliferation, migration, and cell death of U251 (A,C,E) and U-87MG (B,D,F). All
data are represented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Migration, assessed using a wound healing assay, showed that U251 cells are less
migratory than U-87MG cells (Figure 6C,D), and the exposure to glucose, glutamine and
glutamate significantly increased U251 and U-87MG cell migration (Figure 6C,D). Lactate
did not change the migration rate in U251 cells (Figure 6C) and significantly decreased
the wound closure in U-87MG at the end of the assay, between 32 and 48 h of incubation
(Figure 6D).

Considering cell death, in general, U251 cells presented lower cell death levels than
U-87MG cells, and glucose, glutamine, and glutamate did not affect cell death levels in any
cell line (Figure 6E,F). Lactate induced cell death in U251 (Figure 6E), but not in U-87MG
(Figure 6F), compared to cells cultured in control conditions.

4. Discussion

During cancer progression, metabolic remodeling occurs, allowing for the adaptation
of cancer cells and supporting tumor growth. In this study, we observed that samples
from the primary GBM showed an altered transcriptomic profile related to metabolic
genes compared to normal tissue (Figure 1 and Supplementary Figure S1). Primary GBM
presented an mRNA expression profile compatible with glucose and glutamine depen-
dency and possibly decreased fatty acid synthesis. Increased expression of glycolytic genes
in GBM (including HK2) [25,26] is correlated with increased immune infiltration and a
worse prognosis of GBM [27,28]. Even though glucose is a key metabolite for GBM, in an
NMR spectroscopy study, GBM tumors infused with [U-13C]glucose had less than 50%
glucose-derived acetyl-CoA, which indicates that these tumors use additional substrates for
acetyl-CoA synthesis and TCA cycle fueling, providing energy during tumor growth [29].
Moreover, pyruvate carboxylase expression was decreased (Figure 1S), which is needed
for glutamine-independent growth of tumor cells, since this enzyme allows these cells to
use glucose-derived pyruvate rather than glutamine for anaplerosis [30]. Furthermore,
these tumors are also highly dependent on glutamine [2,14], which is the most frequent
substitute of glucose in cancer bioenergetics [9,16]. GBMs are characterized by decreased
glutamate uptake (Figure 1B) [31] and increased glutamine transporters, as we also ob-
served in Figure 1C [12,13]. In malignant gliomas, GLS2 is commonly downregulated (as
we observed in Figure 1E) [32], but GLS1 is the predominant enzyme in the brain, since it is
expressed at higher levels than GLS2 [33], allowing for the hydrolysis of glutamine. Even
though GBM tumor cells rely on glucose and glutamine, they can use fatty acids (FA) for
energy production [34,35]. We observed that ACADM, the gene that encodes for medium-
chain acyl-coenzyme A dehydrogenase (MCAD), is increased in primary GBM (Figure 1H),
suggesting increased fatty acid β-oxidation. In addition to ATP production, fatty acid
oxidation contributes with NADH, NADPH, and FADH for cell proliferation [36,37]. More-
over, FABP7, the gene that codes for the brain fatty acid-binding protein (B-FABP) [38], is
upregulated in brain tumor tissue (Figure 1L) and is associated with a poor prognosis in
malignant gliomas due to its effect in inducing cell migration and tumor invasion [39,40].
We also found decreased levels of the genes that encode for FATP2 and FATP4 (Figure 1I,K),
while FATP3- and FAT (CD36)-encoding genes were increased (Figure 1J,M). FATP2 is less
expressed in the brain [41], while FATP4 is highly expressed [42]. This decrease in the
primary tumor may suggest that tumor cells do not rely on this FA transporter, since FATP4
knockdown in U-87MG cells do not affect the cell number [43]. Contrarily, FATP3 is weakly
expressed in the brain [44,45], being more associated with fatty acid activation instead of
uptake [44], but highly expressed in GBM samples [43]. FATP3 knockdown also inhibited
the ability of neurospheres to propagate in orthotopic tumor xenografts [46]. Moreover,
CD36 translocase is highly expressed in GBM [47] and promotes long-chain FA uptake as
well as oxidated lipoproteins [48,49].

We found decreased levels of FASN expression in primary GBM compared to normal
tissue in the GBM TCGA cohort (Figure 1G), which suggests decreased fatty acid synthesis.
This goes against the findings of several groups, in which FASN was overexpressed in
GBM and was correlated with increased glioma grade [50]. This could be due to the small
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sample of normal tissue adjacent to tumor found in this cohort with mRNA seq data, which
comprised only five samples. Since the expression of FASN is highly heterogeneous among
these tumors, a larger sample of normal brain tissue would be important for clarifying these
results. When we considered the IDH1 status, increased FASN expression was observed in
IDH1-mutated tumors, compared to IDH1 wt (Figure 1T). In fact, IDH1 mutations lead to
increased BCAA levels [51], since α-ketoglutarate is not available for BCAA transamination
once it is converted into the oncometabolite 2-hydroxyglutarate (D2-HG) by IDH1 mutation.
Moreover, the branched-chain amino acid transaminase (BCAT1/2) is inhibited by D2-
HG [52] in IDH1 mutant tumors, and BCAT promoter methylation also occurs, which
leads to BCAT epigenetic silencing [53]. When BCAA metabolism is suppressed, it leads
to decreased fatty acid levels, since BCAAs can be a carbon source for acetyl-CoA and,
consequently, fatty acid biosynthesis [54,55].

The impact of the availability of different organic compounds as carbon sources on
cell malignancy features was evaluated in GBM cell lines, presenting different phenotypes.
The U251 cell line is more proliferative than that of U-87MG, which is a more migratory
cell line (Figure 6). These features were disclosed in vitro but also in vivo since a study
comparing U251 and U-87MG xenograft tumor models showed that U251 proliferated more,
creating more cell nests and secondary tumors whereas the U-87MG model presented faster
infiltrative tumor growth, with larger tumor volume and decreased overall survival [56].
Another study also showed that U-87MG migrates and invades more than U251 [57]. In
addition to these phenotypic differences [58], these cell lines also presented differences at
the metabolic level, with U251 having increased antioxidant and pyrimidine levels than U-
87MG (Figure 5B). Proteomic and RT-qPCR analyses showed differences between these two
cell lines, mainly in nicotinamide nucleotide metabolic process regulation, RNA splicing,
glycolysis, and purine metabolism [57].

In U251 cells, gene expression and metabolic profiling using 1H-NMR indicate that
glucose exposure increased glycolysis, TCA cycle, and pyrimidine synthesis, while in
U-87MG, glycolysis is also increased, but the PPP is decreased (decreased G6PD), as well as
the glutamine and glutamate metabolism and fatty acid metabolism (decreased SLC27A1,
ACADS and ACADM) (Figure 7). Exposure to glucose also induced migration of both cell
lines (Figure 6). This suggests that, in U251, glucose induces more energy production,
leading to increased migration, while U-87MG presents a higher reliance on glucose with
concomitant decrease in FA uptake and degradation. Accordingly, both cell lines presented
increased lactate levels after glucose exposure, indicating the occurrence of glycolysis.
Actually, astrocytes have a specific glucose-dependent metabolic profile that consists of the
production of lactate to support the energy demand of neurons [59]. In fact, we observed
elevated levels of LDHA in the primary GBM TCGA cohort (Figure 1K) and increased
lactate levels in both cell lines using 1H-NMR (Figures 3G and 4G). Therefore, GBM cells
may retain some of the metabolic characteristics of the cells of origin, astrocytes, which
constitute a benefit in the organ microenvironment. Moreover, higher lactate levels are
correlated with higher glioma grade [60], since tumor growth is promoted by lactate uptake
and consumption, dependent on MCT1 [61]. Additionally, in U251, there is a significant
decrease in malonate and o-phosphocholine, which may indicate increased fatty acid
synthesis and consequent phospholipid synthesis [62,63].

Regarding lactate exposure, it affected several metabolic pathways in U251: PPP,
glutamine and glutamate metabolism, fatty acid synthesis, and phospholipid synthesis
(Figure 7). It is important to emphasize that the medium in which these cells were cul-
tured did had neither glucose nor glutamine, contrary to other papers that evaluated the
effect of lactate exposure in GBM cells in complete media [61,64]. Therefore, our results
indicate that lactate, in part, substitutes glucose, as it is a gluconeogenic substrate [65] and
glycolysis/gluconeogenesis intermediate glucose-6-phosphate can be deviated into PPP
and amino acid synthesis, while lactate can also be converted into pyruvate and supply
the TCA cycle and fatty acid synthesis as an acetyl-CoA source [66]. An increase in the
glucose transporter GLUT1 (SLC2A1) also suggests an attempt to increase glucose uptake
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(Figure 2B). Regarding ketone body metabolism, the expression of genes encoding enzymes
and transporters involved was decreased (Figure 2D), possibly because ketone bodies use
the same transporter as lactate to enter cells [67].
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Figure 7. Impact of key metabolites in the gene expression and metabolic profiles of two GBM cell
lines: U251 and U-87MG. The uptake of glucose occurs through the GLUT1 transporter. Hexokinase
2 (HKII) is the first rate-limiting enzyme in the glycolytic pathway. Glucose-6-phosphate can be
diverted to the pentose phosphate pathway (PPP) through glucose-6-phosphate dehydrogenase
(G6PD), contributing to nucleotide synthesis. Glycolysis-derived pyruvate can be converted into
lactate, which can be exported and imported by the monocarboxylate transporters MCT4 and MCT1,
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respectively. Pyruvate oxidation catalyzed by pyruvate dehydrogenase (PDHA) creates acetyl-CoA,
which can enter the TCA cycle. Acetyl-CoA can also be derived from ketone body oxidation, which
occurs through 3-oxoacid CoA-transferase 1 (SCOT) and acetyl-CoA acetyltransferase 1 (ACAT1).
Acetyl-CoA is also a product of fatty acid β-oxidation, where ACADS and ACADM are involved in
the breakdown of small- and medium-chain fatty acids, respectively. Acetyl-CoA can be deviated
to supply fatty acid synthesis, which occurs through fatty acid synthase (FAS), contributing to
phospholipid synthesis. Glutamine is transported through LAT1, SNAT1, SNAT2, and SNAT3, and
is hydrolyzed by glutaminase (GLS) into glutamate, generating nitrogen, which is then used for
amino acid, purine, and pyrimidine synthesis. Glutamate can also be imported through GLT-1
and GLAST, then being converted into α-ketoglutarate, entering the TCA cycle, or into glutamine,
through glutamine synthase (GLNS). Glutamine-derived α-ketoglutarate entering the TCA cycle
and contributing to fatty acid metabolism reinforces the importance of glutamine, which is not
only used for biomass production, but also for energetic purposes. Glutamine-derived glutamate
is used as a nitrogen source in the synthesis of serine from glucose-derived 3-phosphoglycerate.
Serine can be converted into glycine, supplying one-carbon metabolism (folate and methionine cycle),
from which cysteine is synthesized through the transsulfuration pathway. Glutamate and cystine,
alongside glycine, constitute the three components of glutathione, the cell’s most important reactive
oxygen species (ROS) scavenger and detoxifying agent. Arrows mean decrease (↓), and increase (↑).
Unknown or uncertain course is (?) signed.

In U-87MG exposed to lactate, there was a decrease in glycolysis but an increase in
TCA cycle, which can indicate that lactate is being converted into pyruvate and fueling the
TCA cycle with carbons through acetyl-CoA [68,69]. There is also an increase in glutamine
and glutamate metabolism and a decrease in fatty acid β-oxidation. This indicates that the
U-87MG cell line also adapts easily to the absence of glucose and glutamine, being able to
use lactate as a carbon source, which is reflected in the unaffected cell proliferation after
lactate exposure (Figure 6). However, several amino acids decreased after lactate exposure
(Figure 4B,D), which suggests increased protein synthesis/amino acid consumption or
decreased amino acid synthesis, the latter being the most feasible hypothesis, since these
cells did not have glutamine in the culture medium, which provides the nitrogen needed
for amino acids synthesis [70,71]. Moreover, glutamine is the main source of glutamate,
which constitutes a metabolic hub, having a core role in supplying different metabolic
pathways [72]; thus, it makes sense that the consumption of amino acids is decreased in the
absence of glutamine.

Glutamine exposure decreased glutaminolysis and the use of glucose by U251, while
increasing fatty acid and phospholipid synthesis (Figure 6). Regarding U-87MG, there was a
decrease in glutamate consumption and glutamine transport, since glutamine also provides
the nitrogen needed for amino acid synthesis. Fatty acid β-oxidation was decreased, while
phospholipid synthesis was increased (Figure 7), which are elements of cell membranes
and essential to supporting proliferation and tumor growth [73]. Pyrimidine metabolism
was also decreased.

Glutamate exposure increased fatty acid synthesis while decreasing BCAA degra-
dation and glycolysis in U251 (Figure 7). In U-87MG, there was decreased glutamate
consumption, reduced pyrimidine metabolism and β-oxidation, while phospholipid syn-
thesis increased. This suggests that, in both cell lines, glutamate is channeled into fatty acid
and phospholipid synthesis [74,75].

Regarding the synthesis of FAs in GBM cell lines, we saw that it may increase since
the expression of FASN was upregulated in the presence of glutamine. It is known that
glutamine can be used to sustain de novo lipogenesis [76], which might indicate that
glutamine is important to meet the metabolic requirements of GBM cells for FA synthesis
to occur. These results, however, do not fully translate into the organic fraction of cells
exposed to different conditions (Figures 3K and 4K). It was observed that the dynamics of
lipids stay similar to the control condition, the only exception being phosphatidylcholine
in the U251 cell line (Figure 3K), which increased, separately, in the presence of glutamine
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and glutamate. When glucose was added, relative phosphatidylcholine levels were similar
to control levels. Phosphatidylcholine is an important structural lipid, being one of the
most abundant phospholipids in the cell membrane [77]. Furthermore, o-phosphocholine
is a precursor of phosphatidylcholine [78], and U251 presented decreased levels of o-
phosphocholine upon exposure to glutamine (Figure 3E), which fits with an increased flow
of phosphatidylcholine production. In the case of U-87MG cells (Figure 2J), the expression
of genes related to fatty acid oxidation and synthesis decreased in most conditions, with
no impact on lipid dynamics in organic phases (Figure 4K). The development of a more
targeted approach to lipid profiling is necessary to better understand the effects of nutrient
availability on the metabolism of lipids. Hence, we observed that each carbon source
induced different responses in each cell line and that cells can adapt to it, increasing
a differential flux of metabolic pathways to maintain cell proliferation and migration
(Figure 7).

Thus, assessing the impact of each metabolite is important for a better understanding
of GBM biology. Lactate is pointed out as a valuable energetic and biomass source and
besides the two cell lines present different adaptive courses to lactate, they are both able
to metabolize it and adapt the expression and metabolic profiles to lactate availability.
This shows an opportunity to use lactate-related metabolic players as markers and targets
in GBM, MCT1 and MCT4 being the main candidates since they are the most explored
elements in cancer context [79]. In this paper, we also highlighted the fatty acid metabolism
and the glutamine/glutamate metabolism as putative targets of anti-GBM therapies. As
mentioned in a previous review paper from our group [14], several strategies are being
developed to target the glutamine metabolism, including transporter inhibitors, glutami-
nase blocking, and GLT-1 overexpression, among others. Regarding fatty acid metabolism,
pharmacological inhibition of SCD and FADS2 in GBM cells induced palmitate accumula-
tion, which, in combination with TMZ, increased cell death [80]. Moreover, Duman and
colleagues showed that blocking fatty acid oxidation through acyl-CoA binding protein
induced immobility [81], which is very relevant since invasion is one of the major char-
acteristics of these tumors. Additionally, targeting fatty acid oxidation reduces energy
production and cell proliferation [37]. In a study by Pike and colleagues, the GBM cell line
SF188 was exposed to etomoxir (a carnitine palmitoyltransferase 1 inhibitor), which inhibits
fatty acid β-oxidation, and the levels of ATP, NADPH, and glutathione (GSH) decreased,
followed by decreased viability [82].

Unfortunately, these strategies present severe limitations, mainly due to the high
heterogeneity of these tumors, and the major anatomical and molecular obstacle of treating
brain tumors, the blood–brain barrier (BBB), making treatment very challenging with
often poor success. The reduction in the bioavailability of preferential substrates for a
tumor can be a way of interfering with metabolic adaptation and controlling tumor growth.
Besides some limitations, such as the low number of cell lines evaluated, though tested in
biological triplicates, we believe our study is a contribution to better understanding which
core metabolic pathways act on GBM. Therefore, new strategies must be tested in order
to reduce the access of certain organic compounds to the brain and block the metabolic
adaptation of GBM cells. On the other hand, taking advantage of the players expressed
by tumors as mediators of drug delivery systems could be an opportunity to improve the
clinical management of GBM, ensuring more specific delivery and protecting normal cells
from adverse effects.

5. Conclusions

In the future, metabolic profiling could contribute to better diagnosis and follow-up
of the metabolic drift accompanying disease progression and therapy response in GBM.
According to the metabolome, we will be able to identify which pathways are overactivated
in order to allow for the use of metabolism-based therapies to target key players, keeping
in mind that the treatment must be adjusted according to the disease’s progression and to
tumor cells’ metabolic adaptation, which can be mapped using metabolome profiling.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11072041/s1, Table S1. Results of Shapiro–Wilk
normality test. To access if normal tissue, primary and recurrent tumor samples presented a normal
distribution, the Shapiro–Wilk test was performed for all the mRNAseq data related to each gene
evaluated in the TCGA GBM cohort, due to the small sample size of normal and recurrent tumor
samples (n < 50). All data were analyzed using GraphPad Prism. Figure S1. Gene expression profile
between glioblastoma (GBM) (primary and recurrent tumor) and normal tissue in GBM TCGA cohort.
The expression of genes that code for enzymes or transporters involved in several pathways was
assessed. Genes related to glutamine metabolism: GLUL (A), SLC1A3 (B), SLC7A5 (C), SLC7A8 (D),
SLC7A11 (E), SLC38A1 (F), SLC38A2 (G), and SLC38A3 (H). Genes related to glucose, pyruvate, and
lactate metabolism: SLC2A1 (I), G6PD (J), and LDHB (K). Genes related to cysteine metabolism:
SLC7A11 (E), CTH (L), MPST (M), and CBS (N). Genes related to fatty acid metabolism: ACADS (O),
ACADL (P), ACADVL (Q), SLC27A1 (R), SLC27A5 (S), SLC27A6 (T), FABP3 (U), and FABP5 (V). All
data are represented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001. Figure S2. Representative
1H-NMR spectra of aqueous phases of GBM cell lines. Representative 1H-NMR spectra of aqueous
phase of U251 cell line under baseline conditions (A), exposed to glucose (B), lactate (C), glutamine
(D), and glutamate (E). Representative 1H-NMR spectra of aqueous phase of U-87MG cell line in
baseline conditions (F), exposed to glucose (G), lactate (H), glutamine (I), and glutamate (J). Increased
compounds are in blue and decreased compounds in red. Figure S3. Representative 1H-NMR spectra
of organic phases of GBM cell lines. Representative 1H-NMR spectra of organic phase of U251 cell
line under baseline conditions (A), exposed to glucose (B), lactate (C), glutamine (D), and glutamate
(E). Representative 1H-NMR spectra of organic phase of U-87MG cell line in baseline conditions (F),
exposed to glucose (G), lactate (H), glutamine (I), and glutamate (J). Increased compounds are in blue.
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