4,446 research outputs found

    Consequences of impacts of small asteroids and comets with Earth

    Get PDF
    The fragmentation of a small asteroid in the atmosphere greatly increases its cross sections for aerodynamic braking and energy dissipation. At a typical impact velocity of 22 km/s, the atmosphere absorbs more than half the kinetic energy of stony meteoroids with diameters, D(sub m), less than 220 m and iron meteoroids with D(sub m) less than 80 m. The corresponding diameter for comets with impact velocity 50 km/s is D(sub m) less than 1600 m. Most of the atmospheric energy dissipation occurs in a fraction of a scale height, so large meteors appear to 'explode' or 'flare' at the end of their visible paths. This dissipation of energy in the atmosphere protects the earth from direct impact damage (e.g., craters), but it produces a blast wave that can do considerable damage. The area of destruction around the impact point in which the over-pressure in the blast wave exceeds 4 lb/sq in = 2.8 x 10(exp 5) dynes/cu cm, which is enough to knock over trees and destroy buildings, increases rapidly from zero for chondritic meteoroids less than 56 m in diameter (15 megatons) to about 200 sq km for those 80 m in diameter (48 megatons); the probable diameter of the tunguska impactor of 1908 is about 80 m. Crater formation and earthquakes are not significant in land impacts by stony asteroids less than about 200 m in diameter because of the air protection. A tsunami is probably the most devastating type of damage for asteroids 200 m to 1 km in diameter. An impact by an asteroid this size anywhere in the Atlantic would devastate coastal areas on both sides of the ocean. An asteroid a few kilometers across would produce a tsunami that would reach the foothills of the Appalachian Mountains in the upper half of the East Coast of the United States. Most of Florida is protected from a tsunami by the gradual slope of the ocean off its coast, which causes most of the tsunami energy to be reflected back into the Atlantic. The atmosphere plume produced by asteroids with diameters exceeding about 120 m cannot be contained by the atmosphere, so this bubble of high-temperature gas forms a new layer on top of the atmosphere. The dust entrapped in this hot gas is likely to have optical depths exceeding tau = 10 for asteroids with diameters exceeding about 0.5 to 1 km. The optical flux from asteroids 60 m or more in diameter is enough to ignite pine forests. However, the blast wave from an impacting asteroid goes beyond the radius in which the fire starts. The blast wave tends to blow out the fire, so it is likely that the impact will char the forest, as at Tunguska, but the impact will not produce a sustained fire. Because comets dissipate their energy much higher in the atmosphere than asteroids, they illuminate a much larger region and their blast wave is weaker. So they are much more effective in producing large fires. This suggests that the KT impactor was a comet rather than an asteroid

    The Evolution of Blue Stragglers Formed Via Stellar Collisions

    Get PDF
    We have used the results of recent smoothed particle hydrodynamic simulations of colliding stars to create models appropriate for input into a stellar evolution code. In evolving these models, we find that little or no surface convection occurs, precluding angular momentum loss via a magnetically-driven stellar wind as a viable mechanism for slowing rapidly rotating blue stragglers which have been formed by collisions. Angular momentum transfer to either a circumstellar disk (possibly collisional ejecta) or a nearby companion are plausible mechanisms for explaining the observed low rotation velocities of blue stragglers. Under the assumption that the blue stragglers seen in NGC 6397 and 47 Tuc have been created solely by collisions, we find that the majority of these blue stragglers cannot have been highly mixed by convection or meridional circulation currents at anytime during their evolution. Also, on the basis of the agreement between the predictions of our non-rotating models and the observed blue straggler distribution, the evolution of blue stragglers is apparently not dominated by the effects of rotation.Comment: 36 pages, including 1 table and 7 postscript figures (LaTeX2e). Also avaliable at http://astrowww.phys.uvic.ca/~ouellet/ . Accepted for publication in A

    An explanation for metallicity effects on X-ray Binary properties

    Get PDF
    We show that irradiation induced stellar winds can explain two important metallicity effects in X-ray binaries - the higher numbers and the softer spectra of the X-ray binaries in metal rich globular clusters compared to the metal poor ones. As has been previously noted by Iben, Tutukov and Fedorova, the winds should be stronger at lower metallicity due to less efficient line cooling. This will speed up the evolution of the LMXBs in metal poor clusters, hence reducing their numbers. These winds can also provide extra material near the accreting object which may create an intrinsic absorber to harden the X-ray spectra of the metal poor cluster systems relative to the metal rich ones, as suggested by observations. We outline some additional observational predictions of the model.Comment: 6 pages, no figures, accepted to Ap

    First Evidence of Circumstellar Disks around Blue Straggler Stars

    Full text link
    We present an analysis of optical HST/STIS and HST/FOS spectroscopy of 6 blue stragglers found in the globular clusters M3, NGC6752 and NGC6397. These stars are a subsample of a set of ~50 blue stragglers and stars above the main sequence turn-off in four globular clusters which will be presented in an forthcoming paper. All but the 6 stars presented here can be well fitted with non-LTE model atmospheres. The 6 misfits, on the other hand, possess Balmer jumps which are too large for the effective temperatures implied by their Paschen continua. We find that our data for these stars are consistent with models only if we account for extra absorption of stellar Balmer photons by an ionized circumstellar disk. Column densities of HI and CaII are derived as are the the disks' thicknesses. This is the first time that a circumstellar disk is detected around blue stragglers. The presence of magnetically-locked disks attached to the stars has been suggested as a mechanism to lose the large angular momentum imparted by the collision event at the birth of these stars. The disks implied by our study might not be massive enough to constitute such an angular momentum sink, but they could be the leftovers of once larger disks.Comment: Accepted by ApJ Letters 10 pages, 2 figure

    Stellar Collisions and the Interior Structure of Blue Stragglers

    Get PDF
    Collisions of main sequence stars occur frequently in dense star clusters. In open and globular clusters, these collisions produce merger remnants that may be observed as blue stragglers. Detailed theoretical models of this process require lengthy hydrodynamic computations in three dimensions. However, a less computationally expensive approach, which we present here, is to approximate the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These algorithms have been fine tuned through comparisons with the results of our previous hydrodynamic simulations. We find that the thermodynamic and chemical composition profiles of our simple models agree very well with those from recent SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of our simple models also matches closely that of the more accurate hydrodynamic models. Our algorithms have been implemented in an easy to use software package, which we are making publicly available (see http://vassun.vassar.edu/~lombardi/mmas/). This software could be used in combination with realistic dynamical simulations of star clusters that must take into account stellar collisions.Comment: This revised version has 37 pages, 13 figures, 4 tables; submitted to ApJ; for associated software package, see http://vassun.vassar.edu/~lombardi/mmas/ This revised version presents additional comparisons with SPH results and slightly improved merger recipe

    Blue Straggler Stars: The Spectacular Population in M80

    Get PDF
    Using HST-WFPC2 observations in two ultraviolet (UV) filters (F225W and F336W) of the central region of the high density Galactic Globular cluster (GGC) M80 we have identified 305 Blue Straggler Stars (BSS) which represents the largest and most concentrated population of BSS ever observed in a GGC. We also identify the largest, clean sample of evolved BSS yet found. The high stellar density alone cannot explain the BSS, and we suggest that in M80 we are witnessing a transient dynamical state, during which stellar interactions are delaying the core-collapse process leading to an exceptionally large population of collisional-BSS.Comment: 15 pages, 5 figures, Astrophysical Journal Letters, in pres

    ROTSE All Sky Surveys for Variable Stars I: Test Fields

    Full text link
    The ROTSE-I experiment has generated CCD photometry for the entire Northern sky in two epochs nightly since March 1998. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering about 2000 square degrees we identify 1781 periodic variable stars with mean magnitudes between m_v=10.0 and m_v=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined, and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.Comment: Accepted for publication in AJ 4/00. LaTeX manuscript. (28 pages, 11 postscript figures and 1 gif

    The surprising external upturn of the Blue Straggler radial distribution in M55

    Full text link
    By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Straggler Star (BSS) population of the low density galactic globular cluster M55 (NGC 6809) over its entire radial extent. The BSS projected radial distribution is found to be bimodal, with a central peak, a broad minimum at intermediate radii, and an upturn at large radii. Similar bimodal distributions have been found in other globular clusters (M3, 47 Tucanae, NGC 6752, M5), but the external upturn in M55 is the largest found to date. This might indicate a large fraction of primordial binaries in the outer regions of M55, which seems somehow in contrast with the relatively low (\sim 10%) binary fraction recently measured in the core of this cluster.Comment: in press on Ap
    • …
    corecore