We have used the results of recent smoothed particle hydrodynamic simulations
of colliding stars to create models appropriate for input into a stellar
evolution code. In evolving these models, we find that little or no surface
convection occurs, precluding angular momentum loss via a magnetically-driven
stellar wind as a viable mechanism for slowing rapidly rotating blue stragglers
which have been formed by collisions. Angular momentum transfer to either a
circumstellar disk (possibly collisional ejecta) or a nearby companion are
plausible mechanisms for explaining the observed low rotation velocities of
blue stragglers. Under the assumption that the blue stragglers seen in NGC 6397
and 47 Tuc have been created solely by collisions, we find that the majority of
these blue stragglers cannot have been highly mixed by convection or meridional
circulation currents at anytime during their evolution. Also, on the basis of
the agreement between the predictions of our non-rotating models and the
observed blue straggler distribution, the evolution of blue stragglers is
apparently not dominated by the effects of rotation.Comment: 36 pages, including 1 table and 7 postscript figures (LaTeX2e). Also
avaliable at http://astrowww.phys.uvic.ca/~ouellet/ . Accepted for
publication in A