999 research outputs found

    Finite element analysis of periodic transonic flow problems

    Get PDF
    Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate

    Unified derivation of phase-field models for alloy solidification from a grand-potential functional

    Full text link
    In the literature, two quite different phase-field formulations for the problem of alloy solidification can be found. In the first, the material in the diffuse interfaces is assumed to be in an intermediate state between solid and liquid, with a unique local composition. In the second, the interface is seen as a mixture of two phases that each retain their macroscopic properties, and a separate concentration field for each phase is introduced. It is shown here that both types of models can be obtained by the standard variational procedure if a grand-potential functional is used as a starting point instead of a free-energy functional. The dynamical variable is then the chemical potential instead of the composition. In this framework, a complete analogy with phase-field models for the solidification of a pure substance can be established. This analogy is then exploited to formulate quantitative phase-field models for alloys with arbitrary phase diagrams. The precision of the method is illustrated by numerical simulations with varying interface thickness.Comment: 36 pages, 1 figur

    Least squares finite element simulation of transonic flows

    Get PDF
    Finite difference approximation of transonic flow problems is a well-developed and largely successful approach. Nevertheless, there is still a real need to develop finite element methods for applications arising from fluid-structure interactions and problems with complicated boundaries. In this paper a least squares based finite element scheme is introduced. It is shown that, if suitably formulated, such an approach can lead to physically meaningful results. Bottlenecks that arise from such schemes are also discussed

    Incoherent Photoproduction of η\eta-mesons from the Deuteron near Threshold

    Get PDF
    Incoherent photoproduction of the η\eta-meson on the deuteron is studied for photon energies from threshold to 800 MeV. The dominant contribution, the γ\gammaN-η\etaN amplitude, is described within an isobar model. The final state interaction derived from the CD-Bonn potential is included and found to be important for the description of the production cross section close to threshold. Possible effects from the ηN\eta N final state interaction are discussed.Comment: 11 pages, revtex, including 6 figure

    Solar Flare Intermittency and the Earth's Temperature Anomalies

    Full text link
    We argue that earth's short-term temperature anomalies and the solar flare intermittency are linked. The analysis is based upon the study of the scaling of both the spreading and the entropy of the diffusion generated by the fluctuations of the temperature time series. The joint use of these two methods evidences the presence of a L\'{e}vy component in the temporal persistence of the temperature data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean monthly temperature datasets cover the period from 1856 to 2002.Comment: 4 pages, 5 figure

    Learning within sustainable educational innovation:An analysis of teachers' perceptions and leadership practice

    Get PDF
    Innovative initiatives in education often have problems with their sustainability. The present study focuses on three educational innovations that have proved to be sustainable over time. We used a qualitative research approach to study and identify essential features of sustainable educational innovation. Two theoretical frameworks were used to guide the study: the integrated model for sustainable innovation (IMSI) and self-determination theory (SDT). Both frameworks take a different perspective upon learning; IMSI presents learning at the individual level, the team level and the organizational level to be the heart of sustainable innovation, and SDT presents how learning can be improved. The research question focused upon how the SDT concepts of autonomy, competence and relatedness were perceived within sustainable innovation, expressed by the IMSI framework, by teachers and school leaders. Based on our findings we demonstrate that the framework of IMSI and SDT can effectively be applied as a frame of analysis to identify essential features of sustainability in educational innovations and we discuss how concepts of SDT deepen the knowledge of sustainable educational innovation

    Polarization observables of the gamma d --> PiNN reaction in the Delta(1232)-resonance region

    Full text link
    Polarization observables of the three charge states of the pion for the γd→πNN\gamma d\to\pi NN reaction with polarized photon beam and/or oriented deuteron target are evaluated over the whole Δ\Delta(1232)-resonance region adopting a nonrelativistic model based on time-ordered perturbation theory. Results for the π\pi-meson spectra, linear photon asymmetry, vector and tensor target asymmetries are presented. Particular attention is given, for the first time, to double polarization asymmetries for which we present results for T20ℓT_{20}^{\ell} and T2±2ℓT_{2\pm 2}^{\ell}. We found that all other double polarization asymmetries of photon and deuteron target are vanished.Comment: 17 Pages, 8 Figures, accepted for publication in Int. J. Mod. Phys.

    Small eta-N scattering lengths favour eta-d and eta-alpha states

    Full text link
    Unstable states of the eta meson and the 3He nucleus predicted using the time delay method were found to be in agreement with a recent claim of eta-mesic 3He states made by the TAPS collaboration. Here, we extend this method to a speculative study of the unstable states occurring in the eta-d and eta-4He elastic scattering. The T-matrix for eta-4He scattering is evaluated within the Finite Rank Approximation (FRA) of few body equations. For the evaluation of time delay in the eta-d case, we use a parameterization of an existing Faddeev calculation and compare the results with those obtained from FRA. With an eta-N scattering length, aηN=(0.42,0.34)a_{\eta N} = (0.42, 0.34) fm, we find an eta-d unstable bound state around -16 MeV, within the Faddeev calculation. A similar state within the FRA is found for a low value of aηNa_{\eta N}, namely, aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm. The existence of an eta-4He unstable bound state close to threshold is hinted by aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm, but is ruled out by large scattering lengths.Comment: 21 pages, LaTex, 7 Figure

    Scalable Synthesis of 5,11-diethynylated Indeno[1,2-\u3cem\u3eb\u3c/em\u3e]fluorene-6,12-diones and Exploration of Their Solid State Packing

    Get PDF
    We report a new synthetic route to 5,11-disubstituted indeno[1,2-b]fluorene-6,12-diones that is amenable to larger scale reactions, allowing for the preparation of gram amounts of material. With this new methodology, we explored the effects on crystal packing morphology for the indeno[1,2-b]fluorene-6,12-diones by varying the substituents on the silylethynyl groups
    • …
    corecore