
NASA Contr.lctor Report 178121 

lCASE REPORT NO. 86-27 

leASE 
1\'1 NASA-CR-178121 

19860022716 

l~ __ ~ ____ --------_/ 

LEAST SQUARES FINITE ELEMENT SIMULATION OF TRANSONIC FLOWS 

T. F. Chen 

G. J. Fix 

Contract No. NASI-17070 

May 1986 

INSTITUTE FOR CO~~UTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langley Research Center, Hampton, Virginia 23665 

Operated by the Universities Space Research Association 

NI\SI\ 
National Aeronautics and 
Space Administration 

Langley R8I88rch Center 
Hampton, Virginia 23665 

.LA~GLEY RESEARCH CENTER 
LIBRARY, NASA 

H'l.r·.~PTONt VIRGINIA 

https://ntrs.nasa.gov/search.jsp?R=19860022716 2020-03-20T13:06:33+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42839714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LEAST SQUARES FINITE ELEKENT SIKULAl'ION 

OF TRANSONIC FLOWS 

T. F. Chen 
Carnegie-Mellon University 

G. J. Fix 
Carnegie-Mellon University 

Dedicated to Milton E. Rose 
on Occasion of his 60th Birthday 

ABSTRACT 

Finite difference approximation of transonic flow problems is a well-

developed and largely· successful approach. Nevertheless, there is still a 

real need to develop finite element methods for applications arising from 

fluid-structure interactions and problems with complicated boundaries. In 

this paper we introduce a least squares based finite element scheme. It is 

shown that, if suitably formulated, such an approach can lead to physically 

meaningful results. Bottlenecks that arise from such schemes are also 

discussed. 
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1. INTRODUCTION 

In this paper we consider the approximation of transonic flows by finite 

element methods based on a variational method of the least squares type. The 

objective here is purely computational. In particular, we have sought to 

fully exploit the ideas arising from mathematical analysis of such methods 

(see, for example, [1] [6]) and directly apply them to a nontrivial 

transonic flow problem. The major conclusion drawn from this work is that 

finite element methods--suitably formulated--can give physically meaningful 

results. 

There is a significant and largely successful array of finite difference 

techniques for transonic flows (e.g., [17]). Nevertheless, an assumption 

implicit in this work is that there is still a need for stable and accurate 

finite element approaches. First, there are applications from fluid-structure 

interactions that would benefit from the availability of a finite element flow 

model. 

field. 

Second, there is the issue of complicated boundaries in the flow 

The importance of the finite element ideas in such a context--while 

largely untested--is still promising. 

Variational principles of the least squares types have a number of 

valuable computational properties. For example, the algebraic system 

generated is always Hermitian semidefinite. In addition, such schemes, if 

properly formulated, are insensitive to equation type, be it hyperbolic 

(supersonic flows) or elliptic (subsonic flows). In fact, the majority of the 

finite element ideas that have been used for hyperbolic problems to date tend 

to be either implicitly or explicitly of the least squares type. 

Least squares based schemes do have, however, some major computational 

defects. First, they tend to be sensitive to singularities and 



-2-

discontinuities in the flow variables. Moreover, mesh refinement alone does 

not overcome these defects [7]. Based on the work in [7] we introduce 

weighted least squares variational principles, which in combination with mesh 

refinement is capable of dealing with shocks in the flow field. 

In Section 2 we describe the basic numerical formulation, and outline the 

essential computational properties associated with the approach. A key 

feature is the proper choice of weighting functions to use in the least 

squares functional. A closely allied issue is the density modifications 

needed to rule out nonphysical expansion shocks. 

In Section 3 we present sample numerical results. As a model problem we 

select the planar potential flow over a cylinder. 

Other authors have considered finite element approximation of transonic 

flows. Selected references ·are [18] - [21]. 

2. THE LEAST SQUARES FORMULATION 

We consider the potential flow over a body n. Let u denote the 

velocity and p the density. Then a mass balance yields 

div[pE.J = O. (2.1) 

In addition, we have 

u = grad </> (2.2) 

for the velocity potential </>. The density p is given as a function of u 

by the Bernoulli equation. 

velocity 

The system is closed by specifying the normal 
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u·n = v (2.3) 

at the boundaries of the flow region. On the body n the no flow condition 

u·n = 0 

applies. We assume that the flow region is contained in a box B and that 

(2.3) is specified on the boundary of B. Thus 

" n Bin (2.4) 

defines the flow region, and (2.1) - (2.2) hold in n with (2.3) holding on 

the boundary rand n. 

Since the flow is assumed to be irrotational, (2.1) - (2.2) can be 

replaced with 

div(pu) = 0 in n 

curl(~) = 0 in n 

u·n = v on r. 

A least squares scheme based on this system takes the form 

f {ldiV(P~)12 + Icurl(~)12} 
n 

min, 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where the variation is taken u in some finite element space satisfying the 
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boundary conditions (2.7). Such a div - curl system has proven to be very 

effective for elliptic systems (subsonic flows) in cases where the density 

p = p(~) and the velocity field u are smooth [8]. 

Preliminary results indicate that with appropriate weighting functions on 

the terms in (2.8), the nonsmooth cases can be treated as well. Nevertheless, 

in this paper we shall focus attention on (2.1) - (2.2) and least squares 

schemes of the form 

min, (2.9) 

where ~ = p~ is the mass flow and w is a weighting function to be chosen. 

In this setup the variables are the potential ~ and the mass flow v. 

The density in (2.9) 

p = p ( I grad ~ I ) 

is obtained from Bernoulli's equation, i.e., 

Thus, (2.9) is a nonlinear least squares formulation, which is appropriate 

since it reflects the nonlinear character of transonic flow. Once a grid is 

selected (specific examples are given in the next section), the minimization 

of (2.9) over the associated finite element space leads to a nonlinear system 

(2.10) 
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In all of the numerical examples reported in the next section, (2.10) was 

solved by a combination of Newton's method and elimination. Issues related to 

this choice for the equation solver will be discussed in the next section. 

There are three main cases that are considered in this paper: 

Case 1: smooth subsonic flows, 

Case 2: smooth transonic flows, 

Case 3: transonic flows with shocks. 

In the first case (2.9) can be used without modification, and in 

particular no weighting function is needed (Le., w :: 1 can be used). One 

does need special grids to obtain optimal accuracy (see [1]), and the criss

cross grid pattern which satisfies the grid decomposition property of [1] is 

used. 

In the second case a hyperbolic region appears but the flow field remains 

smooth. In this case there is a loss of accuracy in the hyperbolic region. 

In particular, with linear elements the pointwise accuracy in the mass flow v 

drops from 0(h2)--in a generic mesh spacing--to O(h). This can be corrected 

with a suitable choice of weighting function w, and details are given in [8]. 

This modification was not used in the results reported in this paper since the 

hyperbolic regions in question were too small for the suboptimal accuracy to 

have a major effect on the qualitative features of the flow. 

The third case is, by a wide margin, the most important as well as the 

most challenging. Here we use a weight w so that the term 

(2.11) 
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remains meaningful. In addition, modification to the density p = p(lgrad ~I) 

must be introduced so that nonphysical expansion shocks are eliminated. 

For the choice of the weight w, we follow the developments introduced in 

[7]. For most flows, v = pu is continuous across the shock [10]. Neverthe-

less, it does not follow that div v is square integrable, and the primary 

rule derived from [7] is that w be chosen so that 

(2.12) 

This requires that w vanishes appropriately on the shock, which in turn 

means that (2.11) is a least squares principle in a degenerate L2 norm. A 

point of significance, on the other hand, is the fact that if w vanishes to 

minimal order on the shock '(in that (2.12) still holds), then optimal 0(h2) 

can be achieved in unweighted L2 norms provided appropriate mesh refinement 

is introduced. This has been proved rigorously only in special cases (see 

[7]), yet the numerical results in the next section seem to indicate that the 

principle is general. 

These modifications alone do not yield an accurate simulation of the flow 

problem. To do this one must deal with the presence of nonphysical expansion 

shocks. In effect, (2.9) does not have a unique minimum, neither over 

infinite-dimensional function spaces nor over the finite-dimensional finite-

element spaces. One can have expansion shocks, compression shocks, or both. 

What is interesting is the results in the next section tend to indicat'e that 

the case where both type of shocks appear tends to be the stable mode for 

(2.10). That is, an arbitrary choice of starting vector for Newton's methods 

applied to (2.10) tends to converge to this solution. 
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To eliminate expansion shocks we consider density biasing which in effect 

introduces streamwise diffusion into (2.1) - (2.2). Following [11] (see also 

[12] - [14]) the modified density takes the form 

P = P - UP 6.s, s 
(2.13) 

where is the derivative of the density P along the streamwise 

direction. Since the density has the form 

P P ( I grad <P I ), 

the derivative ps formally involves second derivatives of <p. 

expanded in terms of linear elements, it is necessary to replace 

streamwise difference quotient; i.e., 

P = P - U 6.p 6.s, 

in the least squares formulation. 

3. NUMERICAL RESULTS 

Since <P is 

with a 

(2.13') 

To illustrate the above ideas we selected the classic problem of a planar 

flow past a cylinder. The flow region plus boundary conditions are given in 

Figure 3.1. The configuration shown in this figure assumes that both the 

outflow and inflow remain subsonic. Figure 3.2 contains a typical grid. For 

economy only the top part of the flow region is shown, and the special 

refinement needed for the shocks is not shown. 
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The first set of results shows a typical subsonic flow pattern. The 

results are given in Figure 3.3 for a free stream Mach number of 

M = O.I. 
co 

Convergence studies at such Hach numbers are reported in [5] - [6]. These 

results indicate, with the type of grid shown in Figur~ 3.2, one can readily 

achieve L2 error of Ii. or less for the velocity field. 

The next set of results deal with the smooth transoriic case. Of special 

interest here is the ability of the scheme to detect the onset of supersonic 

flow. Analytical techniques (see [15] and [16)) have given accurate values 

for the critical free stream Mach number ~ as a function of diD, where 

d is the diameter of the cylinder and D is the width of the channel. These 

results are reproduced in Figure 3.4. Numerical results from the least 

squares scheme are given in Figures 3.5 - 3.7 for Moo = .42, .45, and .50, 

respectively. The diD ratio used for this case is 1/6. Extrapolation 

based on these results indicates that the critical Mach number is 

approximately .41, which is good agreement with Figure 3.4. 

The next set of results show what least squares based schemes produce when 

diffusion via density modification is not used. These are shown in Figure 3.8 

which contains plots of the velocity q = I~I versus angle e along the 

cylinder and at a radius slightly above the cylinder. The free stream Mach 

number is M = .5. The shock at the front of the cylinder is an expansion 
co 

shock and is nonphysical. The one at the rear is a compression shock. A 

remarkable feature of this approximation is that the physically relevant 

compression shock is approximately in its correct position and is apparently 

unaffected bY,the spurious shock. (Compare Figures 3.8 and 3.9.) 
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The solution shown in Figure 3.8 is apparently a stable mode for the 

nonlinear system (2.10). Indeed, Newton's method converged to this solution 

rather rapidly for a wide variety of initial conditions. 

In this regard, it is interesting to note that for the least squares 

formulation the Jacobian is not singular near the solution shown in Figure 

3.8. Density modifications are needed to remove the spurious shock shown at 

the front of the cylinder. However, they are not needed to obtain nonsingular 

Jacobians. 

The final results deal with the complete least squares . system with the 

density modification discussed in the previous section. Figures 3.9 - 3.11 

show the velocity field over the cylinder, at a radius slightly larger that 

that of the cylinder, and at a radius in the free stream. Note that· the 

spurious expansion· shock has been totally eliminated. Moreover, the shock 

location and strength as well as the velocity profile appear to be correct as 

is the supersonic bubble shown in Figure 3.12. 

While we regard these numerical experiments as successful, there are a 

number of areas where the approach could be improved. The first issue 

concerns the equation solver. Once the density modification were introduced, 

the number of iterations increased by a factor of 2 to 3. Moreover, the 

solution shown in Figure 3.9 tended to be less "attractive" to the Newton 

iterations than that shown in Figure 3.8 (without density modifications). In 

fact, it was not difficult to find starting vectors where nonconvergence was 

seen, in the former case, although the starting state of a uniform flow always 

leads to convergence. This suggests that an alternative equation solver 

(e.g., preconditioned conjugate gradient) might be a more efficient choice for 

the equation solver. 
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A second issue concerns post-shock oscillations. These are seen in Figure 

3.10, which is the radius where the oscillations were found to be the most 

significant. These oscillations were not seen on the body of the cylinder 

(Figure 3.9) and disappeared rather rapidly away from the cylinder (Figure 

3.11). This is clearly a grid effect due to the slight misalignment of shock 

and grid. 

4. CONCLUSIONS 

Finite difference approximations to transonic flow problems are well

developed and have been successfully used for a wide range of problems. 

Nevertheless, there is still a need to develop finite element approaches for 

such problems for a variety of applications. We feel that the results 

presented here do show that such schemes can give physically meaningful 

simulations. 

On the other hand, our experience has tended to indicate that 

straightforward application of the basic finite element idea may not always be 

successful. Key computational issues are as follows: 

(i) There is a need 

approximations are 

inappropriate. 

to carefully develop 

formulated. Classical 

spaces in which the 

spaces are generally 

(ii) Some form of diffusion (via density modifications or otherwise) appears 

to be needed. Moreover, care is needed in the way this diffusion is 

introduced. 

(iii) The geometrical pattern of the grid selected is of importance. Some 
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patterns are definitely superior to others. 

Finally, there are some important "bottlenecks" associated with the scheme 

employed in this paper, which, if properly addressed, could lead to an even 

more efficient approach. These include the following: 

(i) There is a need for an equation solver that is more efficient than the 

Newton method used in this paper. 

(ii) There is a need for adaptive grid refinement techniques that would lead 

to a better shock grid alignment than that achieved in this paper. 
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Figure 3.2. 512 elements, 281 nodes, h 
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Figure 3.3. Flow pattern for the free stream Mach number M = O.l. 
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Figure 3.4. Critical Mach number versus dID. 
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Figure 3.5. Plots of the supersonic pocket for M = 0.42. 
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Figure 3.6. Plots of the supersonic pocket f6r M = 0.45. 
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Figure 3.8. Velocity as a function of angle: (a) on cylinder, (b) 
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least squares scheme with density modification - M = .5. 
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Figure 3.11. Velocity as a function of angle half radius above cylinder -

full least squares scheme with density modification -- M = .5. 
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