221 research outputs found

    Carbon dioxide release from retrogressive thaw slumps in Siberia

    Get PDF
    Abstract Thawing of ice-rich permafrost soils in sloped terrain can lead to activation of retrogressive thaw slumps (RTSs) which make organic matter available for decomposition that has been frozen for centuries to millennia. Recent studies show that the area affected by RTSs increased in the last two decades across the pan-Arctic. Combining a model of soil carbon dynamics with remotely sensed spatial details of thaw slump area and a soil carbon database, we show that RTSs in Siberia turned a previous quasi-neutral ecosystem into a strong source of carbon dioxide of 367 ± 213 gC m-1 a-1. On a global scale, recent CO2 emissions from Siberian thaw slumps of 0.42 ± 0.22 Tg carbon per year are negligible so far. However, depending on the future evolution of permafrost thaw and hence thaw slump-affected area, such hillslope processes can transition permafrost landscapes to become a major source of additional CO2 release into the atmosphere.</jats:p

    An observation-based constraint on permafrost loss as a function of global warming

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordPermafrost, which covers 15 million km 2 of the land surface, is one of the components of the Earth system that is most sensitive to warming. Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change. The latest climate models all predict warming of high-latitude soils and thus thawing of permafrost under future climate change, but with widely varying magnitudes of permafrost thaw. Here we show that in each of the models, their present-day spatial distribution of permafrost and air temperature can be used to infer the sensitivity of permafrost to future global warming. Using the same approach for the observed permafrost distribution and air temperature, we estimate a sensitivity of permafrost area loss to global mean warming at stabilization of million km 2 °C â '1 (1σ confidence), which is around 20% higher than previous studies. Our method facilitates an assessment for COP21 climate change targets: if the climate is stabilized at 2 °C above pre-industrial levels, we estimate that the permafrost area would eventually be reduced by over 40%. Stabilizing at 1.5 °C rather than 2 °C would save approximately 2 million km 2 of permafrost.European Union Seventh Framework ProgrammeNatural Environment Research Council (NERC)Swedish Research CouncilResearch Council of NorwayUK DECC/Defra Met Office HadleyEuropean Unio

    Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils

    Get PDF
    Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development

    Temperature effects on carbon storage are controlled by soil stabilisation capacities

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All data used in this manuscript are fully open access and available. The soil data were obtained from a published snapshot derived from the World Soil Information database (https://doi.org/10.17027/isric-wdcsoils.20160003), the long-term climate data are available in the WorldClim version 2.0 database (http://worldclim.org), while the MODIS primary productivity, evapotranspiration, and landcover data are available in the MOD17A3 (https://doi.org/10.5067/MODIS/MOD17A3.006), MOD16A2 (https://doi.org/10.5067/MODIS/MOD16A2.006) and MCD12Q1 (https://doi.org/10.5067/MODIS/MCD12Q1.006) databases respectively. The UKESM data from the sixth coupled model intercomparison project (CMIP6) is available in the public data archive (https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/CMIP/MOHC/UKESM1-0-LL).Physical and chemical stabilisation mechanisms are now known to play a critical role in controlling carbon (C) storage in mineral soils, leading to suggestions that climate warming-induced C losses may be lower than previously predicted. By analysing > 9,000 soil profiles, here we show that, overall, C storage declines strongly with mean annual temperature. However, the reduction in C storage with temperature was more than three times greater in coarse-textured soils, with limited capacities for stabilising organic matter, than in fine-textured soils with greater stabilisation capacities. This pattern was observed independently in cool and warm regions, and after accounting for potentially confounding factors (plant productivity, precipitation, aridity, cation exchange capacity, and pH). The results could not, however, be represented by an established Earth system model (ESM). We conclude that warming will promote substantial soil C losses, but ESMs may not be predicting these losses accurately or which stocks are most vulnerable.Natural Environment Research Council (NERC)Swedish Research CouncilEuropean Union Horizon 202

    Long-term deglacial permafrost carbon dynamics in MPI-ESM

    Get PDF
    We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled long-term permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the pre-industrial (PI) age. Our simulated near-surface PI permafrost extent of 16.9&thinsp; × &thinsp;106&thinsp;km2 is close to observational estimates. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase in total LGM permafrost area (18.3&thinsp; × &thinsp;106&thinsp;km2) – together with pronounced changes in the depth of seasonal thaw. Earlier empirical reconstructions suggest a larger spread of permafrost towards more southerly regions under glacial conditions, but with a highly uncertain extent of non-continuous permafrost.Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of  ∼ &thinsp;150&thinsp;PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168&thinsp;PgC at PI), which is below observational estimates (575&thinsp;PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated ALDs. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, ALDs, soil litter input, and heterotrophic respiration.</p

    Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)

    Get PDF
    The surface energy budget plays a critical role in terrestrial hydrological and biogeochemical cycles. Nevertheless, its highly spatial heterogeneity across different vegetation types is still missing in the ORCHIDEE-MICT (ORganizing Carbon and Hydrology in Dynamic EcosystEms–aMeliorated Interactions between Carbon and Temperature) land surface model. In this study, we describe the representation of a tiling energy budget in ORCHIDEE-MICT and assess its short-term and long-term impacts on energy, hydrology, and carbon processes. With the specific values of surface properties for each vegetation type, the new version presents warmer surface and soil temperatures (∼ 0.5 °C, +3 %), wetter soil moisture (∼ 10 kg m−2, +2 %), and increased soil organic carbon storage (∼ 170 Pg C, +9 %) across the Northern Hemisphere. Despite reproducing the absolute values and spatial gradients of surface and soil temperatures from satellite and in situ observations, the considerable uncertainties in simulated soil organic carbon and hydrological processes prevent an obvious improvement in the temperature bias existing in the original ORCHIDEE-MICT model. However, the separation of sub-grid energy budgets in the new version improves permafrost simulation greatly by accounting for the presence of discontinuous permafrost types (∼ 3×106 km2), which will facilitate various permafrost-related studies in the future.</p

    Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData Availability. The results and peat core data are summarized in Datasets S1–S6. Maps of predicted peatland extent, peat depth, and peat C and N storage (10-km pixels) are archived and freely available for download at https://bolin.su.se/data/hugelius-2020Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y-1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.Swedish Research CouncilEuropean UnionEuropean Union Horizon 2020Gordon and Betty and Gordon Moore FoundationNatural Environment Research Council (NERC)National Science FoundationNational Natural Science Foundation of Chin

    Pan-Arctic soil element availability estimations

    Get PDF
    Arctic soils store large amounts of organic carbon and other elements, such as amorphous silicon, silicon, calcium, iron, aluminum, and phosphorous. Global warming is projected to be most pronounced in the Arctic, leading to thawing permafrost which, in turn, changes the soil element availability. To project how biogeochemical cycling in Arctic ecosystems will be affected by climate change, there is a need for data on element availability. Here, we analyzed the amorphous silicon (ASi) content as a solid fraction of the soils as well as Mehlich III extractions for the bioavailability of silicon (Si), calcium (Ca), iron (Fe), phosphorus (P), and aluminum (Al) from 574 soil samples from the circumpolar Arctic region. We show large differences in the ASi fraction and in Si, Ca, Fe, Al, and P availability among different lithologies and Arctic regions. We summarize these data in pan-Arctic maps of the ASi fraction and available Si, Ca, Fe, P, and Al concentrations, focusing on the top 100 cm of Arctic soil. Furthermore, we provide element availability values for the organic and mineral layers of the seasonally thawing active layer as well as for the uppermost permafrost layer. Our spatially explicit data on differences in the availability of elements between the different lithological classes and regions now and in the future will improve Arctic Earth system models for estimating current and future carbon and nutrient feedbacks under climate change (https://doi.org/10.17617/3.8KGQUN, Schaller and Goeckede, 2022).</p

    A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming (article)

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The datasets analysed during this study are available online: CMIP5 model output [https://esgf-node.llnl.gov/search/CMIP5/], CMIP6 model output [https://esgf-node.llnl.gov/search/cmip6/], The WFDEI Meteorological Forcing Data [https://rda.ucar.edu/datasets/ds314.2/], CARDAMOM Heterotrophic Respiration [https://datashare.is.ed.ac.uk/handle/10283/875], MODIS Net Primary Production [https://lpdaac.usgs.gov/products/mod17a3v055/], Raich et al. 2002 Soil Respiration [https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp081/ndp081.html], Hashimoto et al. 2015 Heterotrophic Respiration [http://cse.ffpri.affrc.go.jp/shojih/data/index.html], and the datasets for observational Soil Carbon [https://github.com/rebeccamayvarney/soiltau_ec].Code availability: The Python code used to complete the analysis and produce the figures in this study is available in the following online repository [https://github.com/rebeccamayvarney/soiltau_ec].Carbon cycle feedbacks represent large uncertainties in climate change projections, and the response of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil carbon depend on changes in litter and root inputs from plants and especially on reductions in the turnover time of soil carbon (τs) with warming. An approximation to the latter term for the top one metre of soil (ΔCs,τ) can be diagnosed from projections made with the CMIP6 and CMIP5 Earth System Models (ESMs), and is found to span a large range even at 2 °C of global warming (-196 ± 117 PgC). Here, we present a constraint on ΔCs,τ, which makes use of current heterotrophic respiration and the spatial variability of τs inferred from observations. This spatial emergent constraint allows us to halve the uncertainty in ΔCs,τ at 2 °C to -232 ± 52 PgC

    Permafrost

    Get PDF
    Permafrost is perennially frozen ground, such as soil, rock, and ice. In permafrost regions, plant and microbial life persists primarily in the near-surface soil that thaws every summer, called the ‘active layer’ (Figure 20). The cold and wet conditions in many permafrost regions limit decomposition of organic matter. In combination with soil mixing processes caused by repeated freezing and thawing, this has led to the accumulation of large stocks of soil organic carbon in the permafrost zone over multi-millennial timescales. As the climate warms, permafrost carbon could be highly vulnerable to climatic warming. Permafrost occurs primarily in high latitudes (e.g. Arctic and Antarctic) and at high elevation (e.g. Tibetan Plateau, Figure 21). The thickness of permafrost varies from less than 1 m (in boreal peatlands) to more than 1 500 m (in Yakutia). The coldest permafrost is found in the Transantarctic Mountains in Antarctica (−36°C) and in northern Canada for the Northern Hemisphere (-15°C; Obu et al., 2019, 2020). In contrast, some of the warmest permafrost occurs in peatlands in areas with mean air temperatures above 0°C. Here permafrost exists because thick peat layers insulate the ground during the summer. Most of the permafrost existing today formed during cold glacials (e.g. before 12 000 years ago) and has persisted through warmer interglacials. Some shallow permafrost (max 30–70m depth) formed during the Holocene (past 5000 years) and some even during the Little Ice Age from 400–150 years ago. There are few extensive regions suitable for row crop agriculture in the permafrost zone. Additionally, in areas where large-scale agriculture has been conducted, ground destabilization has been common. Surface disturbance such as plowing or trampling of vegetation can alter the thermal regime of the soil, potentially triggering surface subsidence or abrupt collapse. This may influence soil hydrology, nutrient cycling, and organic matter storage. These changes often have acute and negative consequences for continued agricultural use of such landscapes. Thus, row-crop agriculture could have a negative impact on permafrost (e.g. Grünzweig et al., 2014). Conversely, animal husbandry is widespread in the permafrost zone, including horses, cattle, and reindeer
    • …
    corecore