6,458 research outputs found

    Effects of errors on decoupled control systems

    Get PDF
    Various error sources in a decoupled control system are considered in connection with longitudinal control on a simulated externally blown jet-flap STOL aircraft. The system employed the throttle, horizontal tail, and flaps to decouple the forward velocity, pitch angle, and flight-path angle. The errors considered were: (1) imperfect knowledge of airplane aerodynamic and control characteristics; (2) imperfect measurements of airplane state variables; (3) change in flight conditions, and (4) lag in the airplane controls and in engine response. The effects of the various errors on the decoupling process were generally minor. Significant coupling in flight-path angle was caused by control lag during speed-command maneuvers. However, this coupling could be eliminated by including the control lag in the design of the decoupled system. Other error sources affected primarily the commanded response quantity

    Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    Get PDF
    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors

    Decoupled control of a long flexible beam in orbit

    Get PDF
    Control involved commanding changes in pitch attitude as well as nulling initial disturbances in the pitch and flexible modes. Control force requirements were analyzed. Also, the effects of parameter uncertainties on the decoupling process were analyzed and were found to be small. Two methods were investigated: the system was completely coupled and certain actuators were then eliminated, one by one, which resulted in some or all modes not fully controlled; specified modes of the system were excluded from the decoupling control law by employing viewer control actuators than modes in the model. In both methods, adjustments were made in the feedback gains to include the uncontrolled modes in the overall control of the system

    Decoupled and linear quadratic regulator control of a large, flexible space antenna with an observer in the control loop

    Get PDF
    An analysis is performed to compare decoupled and linear quadratic regulator (LQR) procedures for the control of a large, flexible space antenna. Control objectives involve: (1) commanding changes in the rigid-body modes, (2) nulling initial disturbances in the rigid-body modes, or (3) nulling initial disturbances in the first three flexible modes. Control is achieved with two three-axis control-moment gyros located on the antenna column. Results are presented to illustrate various effects on control requirements for the two procedures. These effects include errors in the initial estimates of state variables, variations in the type, number, and location of sensors, and deletions of state-variable estimates for certain flexible modes after control activation. The advantages of incorporating a time lag in the control feedback are also illustrated. In addition, the effects of inoperative-control situations are analyzed with regard to control requirements and resultant modal responses. Comparisons are included which show the effects of perfect state feedback with no residual modes (ideal case). Time-history responses are presented to illustrate the various effects on the control procedures

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Estimated cardiorespiratory fitness in childhood and cardiometabolic health in adulthood: 1970 British Cohort Study

    Get PDF
    BACKGROUND Associations of cardiorespiratory fitness in childhood and adulthood with adult cardiometabolic risk factors are poorly understood, not least because of the paucity of studies. OBJECTIVES We investigated associations between nonexercise testing cardiorespiratory fitness (NETCRF) in childhood/adulthood and cardiometabolic risk factors in adulthood. METHODS Based on an established algorithm comprising gender, age, body mass index, resting heart rate, and self‐reported physical activity at age 10, we computed NETCRF. Risk factors were assessed at age 46 in 5,009 participants when NETCRF was again calculated. Linear regression was used to summarise associations between NETCRF in childhood and risk factors in adulthood and, additionally, the relationship between NETCRF in adulthood and risk factors in adulthood after adjusting for childhood NETCRF. RESULTS Inconsistent associations were observed between childhood NETCRF and adult risk factors. NETCRF in adulthood was associated with blood pressure [‐5.8 (‐6.7, ‐4.9)], glycated haemoglobin [‐3.41 (‐4.06, ‐2.76)], total cholesterol [‐0.16 (‐0.24, ‐0.08)], HDL‐cholesterol [0.19 (0.16, 0.22)], triglycerides [‐0.68 (‐0.85, ‐0.50)] and C‐reactive protein [‐0.29 (‐0.35, ‐0.22)] in adult males. Similar associations were observed in adult females. Compared to those with low estimated fitness in both childhood and adulthood, participants with low fitness in childhood and high fitness in adulthood had a lower risk of two or more cardiometabolic risk factors (odds ratio: 0.22; 95% confidence interval: 0.16, 0.30). CONCLUSION Associations between estimated fitness and risk factors are stronger in adulthood than from childhood to adulthood. Adults with previously sedentary childhoods may still gain benefits from improving their fitness
    corecore