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SUMMARY

A study to develop procedures for applying decoupling theory in the control
of a long, flexible beam in low Earth orbit was performed. Control involved
commanding changes in pitch attitude as well as nulling initial disturbances in
the pitch and flexible modes. Control-force requirements as well as the effects
of parameter uncertainties on the decoupling process were analyzed.

Two methods for developing decoupled control techniques were investigated.
For the first method, the system was completely decoupled (that is, the number
of control actuators equaled the number of modes in the model). Certain actua-
tors were then eliminated, one by one, which resulted in some or all modes not
fully controlled. For the second method, specified modes of the system were
excluded from the decoupling control law by employing fewer control actuators
than modes in the model. Finally, in both methods, adjustments were made in the
feedback gains to include the uncontrolled modes in the overall control of the
system.

Both methods produced initial effects on the system response character-
istics, but these effects were generally small and were damped out in relatively
short time periods. The second method was superior in that it employed a simple
gain-adjustment procedure. However, the first was effective in producing a
single actuator system.

The control-force requirements were found to depend on three factors:
(1) the number and location of control actuators, (2) the number of structural
modes considered in the model, and (3) the values selected for the closed-loop
dynamics of the system. Of these factors, the value selected for the closed-
loop pitch angular frequency was by far the most significant. Over a range of
0.1 to 1.0 rad/sec, the control-force requirements increased by four to five
orders of magnitude.

Decoupled control was found to be essentially insensitive to uncertainties
in the model parameters. This characteristic was important in establishing the
simple gain-adjustment procedure needed for overall control of the system.

INTRODUCTION

A number of future space applications will involve the deployment of very
large structures in Earth orbit (refs. 1 and 2). Because of weight limitations,
these structures will necessarily be extremely thin and flexible and will
require the development of new control technologies. 1In the last several years,
various methods of controlling the attitude and modal displacements of large
space structures have been developed and analyzed (ref. 3); however, much work
remains to be done before simple, reliable control procedures can be established.



Decoupling theory (for example, ref. 4) is a convenient tool for devising
control laws for structures with a large number of state variables because it
allows independent control of each state. For example, the pitch attitude can
be controlled so that the flexible modes are unaffected. The theory also per-
mits the feedback gains to be adjusted in order to achieve desired closed-loop
dynamics without destroying the independent control capabilities. Several
decoupling techniques have been studied recently (for example, refs. 5 to 7);
however, the theory has not been fully utilized because of a basic limitation
wherein complete modal decoupling requires the number of control actuators to
equal the number of modes in the model. Complete decoupled control is usually
not achievable in practical application because a large space structure may have
an infinite number of flexible modes; hence, procedures must be developed which
maintain control of the structure with a small number of control actuators.

This study presents techniques which use decoupling theory and state-
variable feedback to control the pitch attitude and modal amplitudes of a long,
flexible beam in orbit. Structures similar to a long beam could have direct
space application because of the relatively simple one-dimensional control prob-
lem. 1In addition, knowledge gained from the study of the beam could be applied
to the control of more complex space structures. The computer program described
in reference 4 was used for the decoupling calculations.

In the present study, some approximations are incorporated into the decou-
pling procedure to provide adequate control of all modes. The approximations
involve adjustments in the control-~influence coefficients and in the feedback
gains which produce simplified procedures for achieving overall control of the
system. It should be noted that the results of this study represent the ideal
performance of the decoupled control approach. Measurements are assumed to be
provided for the uncontrolled modes; hence no observation spillover is present,
and stability can be guaranteed for the system. Control spillover, however, is
present because the number of control actuators is less than the number of modes
in the model. The control spillover effects degrade performance, but stable
systems can always be achieved with proper selection of feedback gains. The
important problem of stability in the presence of both control and observation
spillover due to the effects of uncontrolled modes (for example, refs. 8 to 10)
is not included in this analysis.

Results are presented which show the various techniques employed in deter-
mining the required feedback gains and their effects on the uncontrolled modes.
These results are depicted primarily as time histories of modal responses and
control-force requirements for step commands on the system. Control-force
requirements are presented in relation to the closed-loop dynamics which cover
a wide range of frequencies and damping ratios. Effects of inaccurate knowledge
of the control-influence coefficients, which lead to errors in the calculated
feedback gains, are included in the analysis.



SYMBOLS

011
A = == (see eqg. (6))
Wi0
Ap modal amplitude of nth generic mode, m
a column vector of modal amplitudes
B control-influence matrix
~ O
B = | === (see eq. (8))
B_:
BF matrix product of B and F
C matrix relating output (decoupled) vector to state vector
D,X,P,Q,R,S,T,U constants
E, effect of external forces on the nth generic mode
F,F',F" feedback gain matrices (see appendix)
Fi 3 element in feedback gain matrix (for example, Fy 8 is gain value in
’ ’
first row and eighth column of F)
f control force
£ m-vector of thrust control forces
G feedforward gain matrix
J pitch-axis moment of inertia, kg-m2
1 undeformed length of beam, m
M, generalized mass of beam in nth mode, kg
M,N auxiliary matrices used in appendix
m number of control actuators
n number of flexible modes plus pitch mode
Tp external pitch torque
t time, sec
r column vector of beam deflections



Subscript:

u

Laplace operator

input command

m-vector of command inputs

diagonal matrix of undamped eigenvalues squared
state variable

2n-vector of state variables

output variable

m-vector of state variables to be controlled in decoupled manner
damping ratio

augmented damping ratico of nth generic mode
augmented damping ratio of pitch mode

pitch angle between undeformed longitudinal axis and local vertical,
rad

position along beam

beam mass per unit length, kg/m

modal shape matrix

zth component.of modal shape function corresponding to nth mode
angular frequency

orbital angular velocity (orbital frequency), rad/sec

angular frequency of nth generic mode (augmented or natural), rad/sec

augmented pitch angular frequency, rad/sec

unaugmented

A dot over a symbol denotes differentiation with respect to time.



METHOD OF ANALYSIS
Equations of Motion

Equations of motion for a thin homogeneous uniform beam whose center of
mass is assumed to follow a circular orbit have been developed in reference 11.
When all rotations and transverse elastic displacements are assumed to occur
within the plane of the orbit, and when the Earth's gravitational field is con-
sidered to be spherically symmetric, these equations can be reduced to

2 . ‘
a2e 3wc sin 20 Tp
dt2 2 J
dzAn 2 2 2 \ ae \2 Ej
+ - i - - == - = —
2 W wc(3 sin® 6 - 1 (dt wc) Al m_ (2)

For the development of the actuator modeling and subsequent decoupling
analysis, equations (1) and (2) can be linearized (ref. 12) about a position
with zero structural deformation and alignment of the beam along the local
vertical. It is assumed that all elastic displacements are small in comparison
to the beam length. The resulting linearized system equations are
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dt2 [ J
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dt2 (,L)n n Mn . (n 1, 2, ) (4)
where structural damping is assumed to be =zero.
Equations in State~Vector Form
Equations (3) and (4) can be written in state-vector form by defining
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so that
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0 = n by n null matrix
I = n by n identity matrix
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is the control vector.

Modeling of Controls

It is assumed that m thrust actuators are located along the beam at
points &y, &5, - - ., &q+ Where £ 1lies along the beam's undeformed longi-

tudinal axis and & = 0 corresponds to the mass center of the undeformed beam.
The actual control forces associated with these actuators are designated

fl’ f2, AR Y respectively. For small elastic displacements, the compo-
nent of the control force parallel to the £-axis is considered negligible.
Equations for the pitch control force and the modal control forces are developed
in reference 11, so that the control vector becomes
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If the n by m matrix appearing in equation (7) is denoted as B, equation (6)
may be expanded in the following form:
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where B 1s the control-influence matrix and the £ values are the control
thrust forces. The generalized masses appearing in equation (7) can be evalu-
ated for homogeneous free-free beams and shown to be independent of the mode

number (ref. 13). Specifically, Mj = pl.

Decoupling Procedure

The computer program described in reference 4 was used for the decoupling
calculations. The system equations are

it

% = Ax + BE (9)

y = Cx (10)

where equation (9) is equation (8) written in abbreviated form and equation (10)
is the output equation with vy representing the states to be decoupled. The
decoupling control law is taken as

f = Fx + Gv



where Vv is the input command vector, and F and G are the feedback and
feedforward gain matrices, respectively. The output is related to the input
through the transfer function H(s), or

~

H(s) v(s) (11)

I

(s)

el b

where y and v are required to be of the same order. The circumflex in
equation (11) indicates the Laplace transform and

H(s) = C(sI - A - BF)—lBG

The computer program determines the F and G matrices so that the transfer
function is diagonal and nonsingular, thus providing independent control for
each of the decoupled (output) variables. A schematic diagram of the .decoupled
control system is shown in figure 1. An example presented in the appendix
illustrates the procedure for decoupling the rigid-body (pitch) mode and the
first flexible mode for a four-mode model of the beam. The second and third
flexible modes are uncontrolled in this example. These uncontrolled modes will
be influenced by effects due to control of the decoupled modes. The purpose of
the present study is to determine methods for reducing these undesired effects.

General Considerations

The results of the present study pertain to a modal control analysis for a
long (100-m) flexible free-free beam in a 250-nautical-mile circular orbit,
where w, = 1073 rad/sec. The beam is represented by a long, slender, hollow
tube made of wrought aluminum with an outside diameter of 10.79 cm and thickness
of 1.06 cm. The mass of the beam is 1000 kg, and the pitch-axis moment of
inertia is 840 000 kg-mz. The analysis includes models with up to five flexible
modes. A continuous-beam frequency analysis for this model gives the first
through the fifth modal natural frequencies as 0.0566, 0.1697, 0.3051, 0.5053,
and 0.80 rad/sec, respectively. In units of Hertz, these values are 0.0090,
0.0270, 0.0486, 0.0805, and 0.1274, respectively.

A modal control system requires measurements of the modal responses
(amplitudes and rates) for the feedback control. Various methods are available
but all involve measuring physical quantities and processing the measurements
to establish the modal responses. A simple scheme for determining the modal
amplitudes can be implemented with p sensors, where p is the number of
flexible modes in the model. 1If the sensors are located to measure p discrete
displacements Yy and if all p modes contribute to the measurements, then the
transformation

A= o7l

provides the desired modal amplitude data A'. The modal rates can be derived
from the amplitude data by differentiation.



Decoupled Control Techniques

Two techniques are used in the decoupled control analysis. 1In the first
approach, the model is completely decoupled; that is, the number of control
actuators equals the number of modes in the model, and full control of all the
modal responses is achieved. As previously stated, the number of modes includes
the rigid-body (pitch) mode plus the structural (flexible) modes. Then, various
actuators are eliminated from the control model, and several techniques are
employed to adjust the original feedback gains to obtain adequate control of
the system with the reduced number of actuators.

The second approach inccrporates a reduced number of control actuators
into the control process; only specified modes are decoupled. The modes remain-
ing in the model are uncontrolled and, hence, are affected by control of the
decoupled modes. Several techniques are used to adjust the feedback gains to
obtain adequate control of the complete model.

Presentation of Data

The results of the control analysis are presented primarily as time his-
tories of modal amplitudes and control requirements for selected values of the
closed-loop dynamic characteristics of the beam. These time histories illus-
trate the potential use of the decoupling techniques for achieving control of
all modes. Time-history data are also presented which show the effect of param-
eter uncertainty on the decoupling process as well as on the uncontrolled modes.
In addition, parametric data plots of control-force requirements and of
uncontrolled mode effects are shown for a range of selected closed-loop
dynamics.

DISCUSSION OF RESULTS

The results are discussed for the two decoupling techniques. The first
approach starts with a completely decoupled four-mode model and proceeds to
reduce the number of control actuators. The original feedback gains for the
four-control completely decoupled model are adjusted so that one, two, or three
actuators are sufficient to control the model. 1In the second approach, beam
models with up to five flexible modes are decoupled by using fewer actuators
than modes in the model. Except for a special case in which an actuator is
located exactly at each end of the beam, this procedure leaves some of the modes
uncontrolled. Information derived from this special case allows the feedback
gains for various control models to be adjusted to obtain control for all modes.

The effect of the various control techniques used in the analysis is
illustrated by time histories of the modal responses and control-force require-
ments. The time histories are produced by instantaneous step-control commands
which are input either as commands for pitch-angle attitude change or as zero
commands designed to reduce all initial displacements to zero. In all cases,
the pitch command value is taken as 0.01 rad. In the same manner, the initial



displacements for the pitch and modal amplitudes are taken as 0.01 rad and
0.01 m, respectively. The resulting initial values for the control forces are
indicated on the time histories by arrows.

Procedure Derived From Complete Decoupling

An example of time-history responses for a completely decoupled four-mode
model is shown in figure 2. The feedback gains employed for this case are pre-
sented in table I as Fj. The gains correspond to certain selected values of
the closed-loop dynamics ®w and ¢ as indicated in figure 2. As shown in the
appendix, second-order dynamics (s2 + 2CLws + w?) are required in calculating the
gains from the w and ¢ values. The A matrix for this model is given in
the appendix. The control-influence matrix is given in table II as By and
corresponds to the arrangement of the control actuators depicted in figure 2.

In all cases throughout this paper, the feedforward gains G are not pre-
sented. These gains operate on the command inputs to produce the decoupled
output and are merely the inverse of the B matrix (see appendix). Each G
column can be multiplied by a constant to change the output sensitivity.

Figure 2(a) shows that all modes can be completely decoupled if the number
of control actuators equals the number of modes. 1In addition, the feedback
gains completely damp out all initial disturbances for a zero command
(fig. 2(b)). (A zero command corresponds to a zero input in all v command
quantities.)

The control-force requirements for the completely decoupled model are
shown in figure 3 for a range of Wy values and Cg = 0.5. Values of w and
 for the flexible modes are not pertinent for the case of a pitch command
because the flexible responses remain at zero. As expected, figure 3 shows a
large drop in control-force requirements in the lower frequency range, inasmuch
as this range represents a system with low stiffness.

Elimination of one control actuator.- Figure 4 illustrates the effect of
taking the completely decoupled model and eliminating the control actuator in
the middle of the beam by setting the third row of Fj; to zero. (The third
row of the G matrix is also set to zero.) Figure 4(a) clearly shows that the
first and third modes cannot be controlled without some adjustments in the feed-
back gains. After some random trial-and-error adjustments, the time-history
responses shown in figures 4(b) and 4(c) were obtained. These responses corre-
spond to increasing only the Fl,8 gain by a factor of 10. As shown in fig-
ure 4(b), the flexible mode responses are not initially decoupled from the pitch
response, but after about 100 sec, they essentially damp out. Similar results
are shown for the zero command in figure 4(c).

Figure 5 is similar to figure 4, except that a different set of closed-loop
dynamics was used to calculate the feedback gains. This procedure was used in
an effort to improve the results of figures 4(b) and 4(c), where the initial
coupling effects on the modal responses are relatively large. The Fl,8 gain
value for figures 5(b) and 5(c) was increased by a factor of 200. Comparison
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of figures 4(c) and 5(c) shows that for a zero command, the magnitudes of the
coupling effects are about the same; however, the responses in figure 5(c)
require over 400 sec to damp out. For a pitch command, comparison of fig-

ures 4(b) and 5(b) shows smaller coupling effects in the latter. The ideal
solution would be to use the gains of figure 5 for pitch commands and the gains
of figure 4 for zero commands in order to obtain the faster response.

Elimination of two control actuators.- Figure 6 illustrates the example in
which the middle and right-end control actuators are eliminated from the com-
pletely decoupled model. 1In this case, the third and fourth rows of the Fj
and G matrices are set to zero. As shown in figure 6(a), none of the modes
are controlled. To yield the results shown in figures 6(b) to 6(e), more ele-
ments of the F matrix required adjusting than in the case where only one con-
trol actuator was eliminated. For figures 6(b) and 6(c), the sign of F; , was
changed, and Fl,8 was doubled; these adjustments resulted in adequate pitch-
and zero-command control. For the results shown in figures 6(d) and 6(e), the
Fy,8 gain value was again doubled; this readjustment resulted in smoother
responses in A3z and f;, but provided no improvement in the coupled effects.
In fact, the zero command produced a 20-percent increase in the effect on A,.

Elimination of three control actuators.- In figure 7 all control actuators,
except the one at the left end, are eliminated from the completely decoupled
model. In order to achieve control of all modes, a large number of adjustments
in the F matrix gains were required. For the pitch and zero commands shown
in figures 7(b) and 7(c), the adjustment of these gain values was based on data
from a special two-actuator case (see Fj, table I) which is described in a
later section. The signs of F; 3 and Fj;,4 were made to correspond with
those of the special case; and the ratios of the Fy 5, . . ., Fj,8 gains to
the Fj3,1, . . ., F1,4 gains (i.e., F1,5:F1,1, etc.) were made to equal the
ratios of the corresponding values of the special case.

Summary of results.- The foregoing results indicate that a completely
decoupled control analysis can be used to develop a control model with fewer
actuators than modes in the model. However, the random method of adjusting the
gains for reasonable control is difficult to use and requires many trial-and-
error attempts. A more practical solution to the control problem is discussed
in the following section.

Procedure With Incomplete Decoupling

An example of time-history responses for a four-mode model decoupled with

only two control actuators is shown in figure 8. (The beam model consists of
the pitch mode plus the first three flexible modes; the A matrix is given in
the appendix.) This case is referred to as a special case of incomplete

decoupling because of the unique location of the actuators. The control-
influence matrix By 1is given in table II and corresponds to an actuator
located exactly at each end of the beam. 1In this case, the pitch and first
flexible modes are decoupled. The feedback gains, presented in table I as F,,
correspond to certain selected values of the closed-loop dynamics w and (
for the decoupled modes, as indicated in figure 8. Even though the second and
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third flexible modes are not included in the decoupling control law, figures 8(a)
and 8(b) show that these modes are controlled, both for a pitch command and for a
zero command.

Special case for determining feedback.- In the special case, where the

control actuators are located exactly at the ends of the beam, the magnitudes

of the elements in the rows for the flexible mode coefficients in B, are the
same. Because of the unique interaction of the actuators with all the flexible
modes, this special case results in a full order F matrix (that is, no zero
columns), thus providing control for all modes. This F matrix is derived by
the computer program described in reference 4 and has the form given in table III
as ! Hereafter, the B, matrix for this special case 1is referred to as

exact’
"

the "exact” B matrix. The Foffset matrix shown in table III corresponds to

cases where the control actuators are offset; that is, they are not located
exactly at the ends of the beam, or where the actuators may be exactly at the
ends, but the beam possesses slightly different structural characteristics at
each end. (The B matrix for this case is shown in table II as B3.) As shown

for Fgffset in table III, the zero columns provide no control for the second

and third flexible modes. Similar results are obtained when deviations occur in
any two rows of Bj. This particular case will be discussed in a subsequent
section.

In table IIT, only the first four columns are shown for ngact; the last
four columns are derived by replacing S with R, and Q with P. The angular
frequencies in F! are the open loop (unaugmented) values for the beam.

exact
Also, the F" matrices shown in the table include only that part required to

change the dynamics; the complete form of F 1is indicated in the appendix.

exact
to calculate the gains. Values selected for wgr Wy Ce, and Cl are used

As noted from table IIT, the F matrix requires fourth-order dynamics

to determine the terms in the equation shown below the matrix. As indicated,
these terms are used as multiplying factors in the various columns of the

F" matrix.

exact
Parameter uncertainty.- The effect of parameter uncertainty was investi-
gated by incorporating errors of *10 and *20 percent, randomly, in the B
matrix. A typical result, using B, from table II, is compared in figure 8(c)
to the no error case. The original feedback gains F5, were used for the case
with errors.

The comparison shown in figure 8(c) indicates a negligible effect of param-
eter uncertainty on the decoupling control process. Comparison of zero command
responses in figures 8(b) and 8(d) gives the same result. Figures 8(e) and 8(f)
illustrate examples of combined commands with parameter uncertainty; that is,

a 0.0l-rad pitch change is required along with zero commands to reduce initial
displacements in the three modal amplitudes. The results show that adequate
control is maintained despite parameter uncertainty.
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The uncertainty in beam model parameters would generally have little or no
effect on the decoupling process because the unaugmented values of wg and Wy
are much smaller than those selected for the closed-loop values in the present
analysis.

Summary of parameter uncertainty effects.- The fact that the effect of
control-influence-parameter uncertainty is small can be important for two
reasons. First, inaccuracies which may be present in any actual control-system
design will not produce undesirable effects on the decoupling process. Second,
this fact can be used in manipulating control models (B matrix) in order to
obtain full-order feedback gain matrices. For example, the B matrices of an
actual control model and an exact model, if similar, can be interchanged in the
calculation of feedback gains with negligible effects on the decoupling process.
This is discussed in a subsequent section.

Effect of decoupling on uncontrolled mode.- As shown in figure 8(a), the
decoupling process has an effect on the second flexible mode, which is one of
the uncontrolled modes. 1In the case depicted, this effect is small and damps
out after a period of time. The effects on the second mode are summarized in
figure 9 for a range of Wy and Ce values. As indicated in the figure, the
closed-loop value selected for wg has, by far, the largest effect on the
second-modal amplitude. The amplitude is relatively insensitive to changes in
the closed-loop damping term Ce.

Control-force requirements.- The control requirements for incompletely
decoupled models are presented in figures 10 and 11 and in table IV. Most of
the results apply to the model with pitch and three flexible modes. The trend
shown for pitch control for the incompletely decoupled models in figure 10 is
similar to that shown in figure 3 for completely decoupled models; however, the
requirements increase more rapidly at the larger values of wg. Data for the
higher order beam models-are included in figure 10 because the modal response
characteristics of these models are analyzed in subsequent sections.

Examples of zero-command control requirements are shown in figure 11. ‘For
the case in the lower plot, the value of 0.5 rad/sec selected for the closed-
loop value of wg results in a dominant pitch mode feedback; that is, the feed-
back gains in the first column of F are much larger than the other gains. As
indicated by the figure, this condition requires much larger control forces
than those in the upper plot, where wg = 0.1 rad/sec.

Control-force requirements are compared in table IV for pitch and zero
commands. The data are similar in the three cases shown. Inasmuch as each
involves a change of 0.0l rad in pitch, this similarity indicates that rela-
tively small control forces are required for the flexible-mode zero commands.

Decoupling by ratio method.- As previously indicated, incomplete decoupling
results in some modes of the model remaining uncontrolled. All modes are con-
trolled in the incomplete decoupling process only in the special case where the
magnitudes of the rows for the flexible mode coefficients in the B matrix are
the same. A case in which the magnitudes are slightly different is shown in

13



figure 12 for the example in the appendix. The B matrix is given in table II
as Bj3. The feedback gain matrix for this case (for selected values of

and ¢ given in fig. 13) would be the same as F3 in table I, except with
zeros in the third, fourth, seventh, and eighth columns.

The time histories in figure 12(a) illustrate the effects on the uncon-
trolled modes caused by the zero gains in the F matrix. The results in fig-
ures 12(b) and 12(c) were obtained by using a ratio method to adjust the zero-
gain columns. These columns were determined from the ratios of the full-order
F5 gain matrix corresponding to the special case previously discussed. In
applying the ratio method, the third column of F3 was adjusted so that its
ratio with the first column in F3 was the same as that of corresponding col-
umns in F5. The same procedure was used with respect to the fourth and second
columns, the seventh and fifth columns, and the eighth and sixth columns. The
time histories in figures 12(b) and 12(c) indicate that the adjusted gains pro-
vide sufficient control for all modes, both for pitch commands and zero commands.
There are small initial effects, but they damp out after about 200 sec.

Summary of effect of ratio method.- Results in figures 12 and 8 show that
the case for the ratio method compares favorably with the special case. Even
though the feedback gains are entirely different in each case, the overall
effects of controlling the system are essentially the same. The pitch-command
response results in figure 12(b) are similar to those shown in figure 8(a) for
the special case where the only adverse effect occurs in Aj;. The control-
force requirements, however, are about three times larger in figure 12(b). The
zero-command results are also similar for the two cases (figs. 12(c) and 8(b)),
except for more rapid initial oscillations in A3 and A3z in figure 12(c).

Extension of ratio method.- It has been shown that control of all modes
with an incompletely decoupled system can be accomplished by a simple method of
gain adjustment. This ratio method was shown for a two-actuator, four-mode case
where the values of the actual (offset) and "exact" control-influence coeffi-
cients were nearly the same. The following sections of the report will discuss
the extension of the ratio method to models with a larger number of structural
modes, as well as to higher order control-actuator models. In addition, the
ratio method can be applied to cases where the actual and exact control-
influence coefficients are noticeably different. An example of such a case is
presented in the following section.

Change in control-actuator location.- The results in figure 13 pertain to
the four-mode model where the f, control-actuator location has been changed
as shown. As in the case of figure 12, the pitch and first flexible modes are
decoupled. The actual control-influence matrix used is given in table II as
Bg. The feedback gain matrix calculated for this case would be the same as that
for Fy (see table I), except with zeros in the third, fourth, seventh, and
eighth columns, and would lead to uncontrolled oscillations in the second and
third flexible modes similar to the oscillations shown in figure 12(a). The
full-order F, matrix was determined by use of the ratio method, as previously
explained.
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Time histories of pitch command and zero command, calculated with the
adjusted feedback gains, are shown in figures 13(a) and 13(b), respectively.
Adequate control is attained in all modes; however, well over 300 sec are
required to damp out the initial effects, with the largest effect occurring in
Aj. The adjusted gain matrix F, required a change in sign in the third,
seventh, and eighth columns due to the sign arrangement in Bg.

For the time histories in figures 13(c) and 13(d), an alternate method of
determining the feedback gain matrix was employed. Fg was calculated according
to

Fg = B L[BF]’

where B-l is the inverse of the first two rows of the Bg matrix and [BF]'
corresponds to the first two rows of the BF matrix determined for the special
case. This BF matrix was used because it was the result of fourth-order
dynamics in F and produced control in all modes. As in the case just dis-
cussed, the signs in the same three columns of Fg were changed. The ¥, and
Fg matrices are similar in that the ratios between every other column are the
same for corresponding columns in the two matrices; both matrices are based on
the Fj; matrix. The gain magnitudes are different for the two matrices because
second-order dynamics were originally involved in calculating Fy.

Comparison of the two sets of data (figs. 13(a) and 13(b) versus 13(c)
and 13(d)) shows similar results. However, the alternate method produces more
favorable response characteristics, both in the initial effects and in the time
to damp to steady state. The ratio method produces control forces for a pitch
command which are three times as high and forces for a zero command which are
one-third as high as those required by the alternate method.

Summary of control-actuator-location effect.- The control-actuator arrange-
ment shown in figure 13 is a poor selection. Comparison with figure 12 illus-
trates the significance of actuator location in two regards. First, the arrange-
ment shown in figure 13 required more manipulation of the feedback gains to
obtain adequate control and secondly, that arrangement required much higher
control rates, both for pitch and zero commands.

Decoupling for higher mode models.- As the size of the model is increased,
the control process becomes more complicated. Results of decoupling, with a
control actuator at each end of the beam, are shown for five-mode and six-mode
models in figures 14 and 15, respectively. In both cases, the actuators are
located exactly at the ends of the beam (special case) and are used to decouple
the pitch attitude and the first flexible mode. The B matrices for these
cases are composed of the B, matrix expanded by an additional one or two rows
whose values follow the trend established by the second, third, and fourth rows.
Under this special condition, the feedback gain matrices are full order, with
the five-mode F composed of a combination of fourth-order and sixth-order
dynamics. The six-mode F, which is represented entirely by sixth-order dynam-
ics, takes the form shown in table V. For control actuators at other locations,
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the ratio method, previously discussed for the four-mode model, could be applied
in adjusting the feedback gains in order to obtain control of all modes.

The pitch-command time histories for the five-mode model in figures 14 (a)
and 14(b) correspond to the feedback matrix Fg shown in table I. The differ-
ence between the time histories was obtained by increasing the eighth column of
Fg by a factor of 100 which smoothed out the high ftequency oscillations. 1In
both cases, control of all modes is achieved, but a relatively long period is
required to damp out the initial effects. Improved pitch-response character-
istics are obtained (shown in figs. 14(c) and 14(d)) with a feedback gain matrix
F7 calculated for a different closed-loop value of wg - However, the initial
effects on the flexible-mode responses are substantially larger.

The time histories in figure 15 show the results for the six-mode model
with two control actuators, one located at each end of the beam. The corre-
sponding feedback gains are shown as Fg in table I. Because of the large time
scale, some detail is lost in the time histories for the control forces; there-
fore, the curve for f; 1is plotted on an expanded time scale in figure 15(b).
The plots for f; and £, are similar.

As shown in figure 15, adequate control is achieved for both a pitch and
zero command, with only small initial effects in A2 and Ay. However, a
relatively long period is required to damp out the system. The high freguency
oscillations in A; and A, have been damped out in figures 15(c) and 15(d) by
increasing the ninth column of the feedback gain matrix Fg Dby a factor of 100.

Summary of effects of increasing number of modes.- Pitch-command control

forces are smaller for the higher mode models (fig. 10). However, the zero-
command control forces for the six-mode model (fig. 15) are more than twice as
large as those for the four-mode model (fig. 8(b)). The zero-command control
rates are about three times as high for the six-mode model. These results sug-

gest that higher order structural models may present more severe control require-
ments. These requirements may be reduced by changing the closed-loop dynamics,
but only to the point where the response characteristics become undesirable.

Change in number of control actuators.- Figure 16 shows decoupling of the
six-mode model achieved by three actuators, where the pitch plus the first two
flexible modes are decoupled. The control-actuator locations are shown in fig-
ure 1l6(a). As this figure illustrates, a pitch command produces oscillations in
the three modes not included in the decoupling control law. (The corresponding
feedback gain matrix is given in table I as Fg.) These oscillations were
damped out (figs. 16(b) and 16(c)) by adjusting the feedback gains using the
ratio method. The closed-loop value of w, = 0.1 rad/sec was used to produce
somewhat better response characteristics for the system.

Use of the ratio method necessitated change of the actual control-influence
matrix Bg (table II) to B7 in order to obtain the conditions for the special
case previously discussed. The flexible-mode coefficients in column 2 were
averaged to give the value 0.0005. The By matrix was then used to derive the
feedback gain matrix FlO (table I) required to adjust the feedback gains in
the actual case. F17 1s the actual feedback gain matrix (adjusted by the ratio
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method) which corresponds to the actual Bg control-influence matrix. The
ratio method required that the zero gains originally occurring in the six
columns of F (similar to those shown for F9) be adjusted in the manner
previously described for the four-mode model. For example, the gains in the
fourth column were adjusted with respect to those in the second column accord-
ing to the ratios of corresponding columns in Fj5, and so on. A change in sign
in the eleventh column was also required.

Summary of effect of number of control actuators.- Comparison of figures 15
and 16 indicates two important aspects concerning the selection of the number of
control actuators to be employed in decoupling. First, increasing the number of
actuators increases the complexity of adjusting the feedback gains for adequate
control. Second, the control forces required for a pitch command increase by
one to two orders of magnitude for the three-actuator case. (The zero-command
forces are essentially unaffected.) The number of actuators should therefore
be kept to a minimum.

CONCLUDING REMARKS

A study has been conducted of the feasibility of employing decoupling pro-
cedures to control large flexible structures in low Earth orbit. The analysis
was performed in connection with a 100-m free-free beam. Control involved com-
manding changes in pitch attitude without affecting the flexible modes, and
nulling initial disturbances in the pitch and flexible modes. Although the
analysis was limited to a simple structure, the results obtained could be con-
sidered generally applicable to more complex large space structures.

The study investigated two decoupling control methods. For the first
method, the system was completely decoupled (that is, the number of control
actuators equaled the number of modes in the model). Certain actuators were
then eliminated, and the feedback gains were adjusted to maintain control of the
system. For the second method, specified modes of the system were excluded from
the decoupling control law by employing fewer control actuators than modes in
the model. Adjustments were then made in the feedback gains to include the
uncontrolled modes in the overall control of the system. Observations based
on the study indicate the following:

1. Both methods were capable of controlling the beam; however, the second
method was superior because it employed a simplified gain adjustment procedure.

2. Both methods produced initial effects on the system response character-
istics; however, the effects were generally small and were damped out in rela-
tively short time periods.

3. Control systems designed by incomplete decoupling were found to be gen-
erally insensitive to uncertainties in the model parameters. This character-
istic can be used to manipulate control models to obtain proper feedback gains
for overall control of the system.
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4. Control-force requirements depend on many factors associated with the
design of the system. As expected, the location of the control actuators has a
large effect. The requirements generally increase with an increase in the num-
ber of actuators and decrease as the number of modes included in the model is
increased.

By far, the most important factor influencing control-force requirements
is the selection of the closed-loop value of pitch angular frequency for the
system. The requirements increase rapidly with increases in this value.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 30, 1980
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APPENDIX

EXAMPLE OF DECOUPLED CONTROL

An example of decoupled control for the pitch and first flexible modes is
presented for a four-mode model (pitch plus first three flexible modes). Two
control actuators are required, one located at each end of the beam, and,
referring to equation (8):

-3 x 107° 0 0 0
0 -0.0032 0 0
W = (A1)
0 0 -0.0288 0
0 0 0 -0.09308 |
0.00005952  =-0.0000590
0.0020 0.00201
B = (A2)
0.0020 -0.0020
0.0020 0.0020

The decoupled control law is taken as
f =Fx + Gv (A3)

where Vv 1is the input command vector, and F and G are the feedback and
feedforward gain matrices, respectively.

For decoupled control of the pitch mode and the first flexible mode, the
output equation is

<l
Il
%

(Ad)

where § is the output vector (pitch angle and first modal amplitude).
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APPENDIX

The decoupling control law gains F and G are determined as follows:
For pitch control only, using equations (Al), (A2), and (A4),

yl=8 5/128 yl=6

?l -0.0000036 + 0‘00005952f1 - 0.0000590f, (A5)

To obtain desired second-order response dynamics, augmented frequency and damp-
ing terms are added to both sides of equation (A5), so that

§1 + 2C6me§l + mgyl = (wé - 0.000003>6 + 2Ceweé

+ 0.00005952fl - 0.000059Of2 = vy (A6)

Values for the quantities wg and Cp can be selected to provide feedback

gains for a desired dynamic response in pitch. Similarly, for first flexible
mode control only

Yy = By Yo = By Yy = By

Yy, = -0.0032a; + 0.0020f; + 0.00201f, (A7)

To obtain desired second-order response dynamics, adding the augmented terms in
equation (A7) gives

. . 2 B 2 .
¥o + 20017, + Wiy, = (wl - o.oo32)Al + 20,0 A

+ O.OO2Ofl + O.OO2Olf2 = vy (A8)

where values for wq and Cl can be selected to provide feedback gains for a
desired dynamic response in the first flexible mode.

The equations (A6) and (A8) written in matrix form are

Mx + Nf

<
Il

or

fF=-n1lmx + N°1T
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APPENDIX

Provided N 1is not singular, then

e

Fx + Gv

i

which is the required decoupled control law (eq. (A3)), where

F=-N1IM=F'+F"

and

as the required feedback and feedforward gain matrices, respectively. The feed-
forward gains operate on the command inputs, and the feedback gains operate on
the amplitude and rate measurements of all the states. The feedback gain matrix
is separated into two parts: that part F' which deletes the unaugmented
dynamics, and F" which incorporates the dynamics selected for the closed-

loop system.
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Fy

F3

Fg

Fg

-73.0467
-154.8164
-57.4491
| 17.5055
-29.0939
29.0939
[-84. 5581

84.1374

41.7280

419.3766

14.4561

145.2877

r--:1.1.122

1.1122

~0.8554

0

2.4131

-0.8554

-159.6918

-159.6918

-61.2754

-61.8155

-154.0575

-308.1150

-398.7301

-797.4621

-159.6918

-159.6918

TABLE I.- FEEDBACK GAIN MATRICES USED IN ANALYSIS

0.6119 10.3187 -730.6858 -
-8.6644 0 -1548.6289
-3.2152 29.4819 -574.6633
-3.7203 10.3187 175.1072 -

-14.1334 -214.5082 -1166.5128

14.1334 -214.5082 1166.5128

-41.0771 -82.3089 -1691.6686

40.8727 -83.0343 1683.2523

-20.2710 -206.9400 834.8100

-203.7276 -413.8694 8390.0500

-7.0226 ~-535.6011 579.6156

-70.5789 -1071.2022 5825.2822

3.1508 -214.5082 -40.6170 =

-3.1508 -214.5082 40.6170

12.5798 -3.

0 46.

35.4862 17.

12.5798 19.

=-1372.9417

=1372.9417

-248.2797

-250.4679

-624.2197

~-1248.4395

-3428.0692

-6856.1386

68.4826 -13

68.4826 -13

2548

0872

1020

7888

-65.

65.

-94.675

94.204

-46

-469

-32

-326

72.9417

72.9417

-12.4202

0

-35.4862

-12.4202

2846 872.9447

2846 872.9447

5 157.8616

5 159.2529

.7206 -396.8920

.5540 -793.7840

.4385 ~2179.6372

.0154 -4359.2745

-0.7027 872.9417

0.7027 872.9417

~-147.2593

147.2593
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TABLE I.- Concluded

[~832.4541

-159.6918 -63.2516 -214.5082 ~249.4739 -16656.0630 -1372.9417 19
Fo =
7
832.4541 -159.6918 63.2516 -214.5082 249.4739 16656.0630 -1372.9417 -19
tl.1122 -54.5126 3.1508 -199.0957 -40.6170 -683.0917 -68.4826 -784.1744
F =
8
1.1122 -54.5126 -3.1508 -199.0957 40.6170 -683.0917 68.4826 -784.1744
-37.5461 -61.7000 -30.5763 0] 0 0 -751.1479 -250.0000 -138.2292 0
F9 = |154.4491 ] -102.0060 0 0 0 3099.1146 0] -461.1483 0
52.9596 -61.7000 20.4267 0 0 0 1059.5098 -250.0000 92.3449 0
0 -54.5126 8.9967 ~199.0957 ~16.7967 -683.0917 0 -784.1744
FlO = [223.9471 0 23.9911 0 -44.7911 o] 4480.2870 0
55.9868 -54.5126 -2.9989 -199.0957 5.5989 -683.0917 1120.0720 -784.1744
-37.5461 -61.7000 2.5987 -225.3460 -4.8518 -773.1558 -751.1479 -250.0000
Fll = [154.4491 0 8.6696 0 -16.1860 0 3099.1146 0
52.9596 -61.7000 -1.7361 -225.3460 3.2412 -773.1558 1059.5098 -250.0000

L9662 872.9417 25.7182
L9662 872.9417 -25.7182
-0.7027 -97.6885 ~147.2593 131.8629
0.7027 -97.6885 147.2593 131.8629
0 0
0 0
0 0
8.2991 -97.6884 -108.2991 131.8628
22.1310 0 ~288.7977 ¢}
-2.7664 ~97.6884 36.0997 131.8628
-27.6458 -31.1437 -360.7636 42.0387
-92,2297 0 -1203.5481 0
18.4690 -31.1437 241.0108 42.0387



TABLE II.- CONTROL-INFLUENCE MATRICES USED IN ANALYSIS

r6.00005952

0.00002976 0 -0.00005952
_ |0.002 -0.000198 -0.0014
 Jo.002 ~0.0011698 0
0.002 ~0.0012437 0.001418
0.00005952  -0.00005952
_ {o.002 0.002
- 0.002 -0.002
0.002 0.002
-6.00005952 -0.0000590
0.002 0.00201
" lo0.002 -0.002
0.002 0.002
[0.00006547  -0.00007142
_|o.0018 0.0016
" 10.0022 -0.0016
0.0024 0.0018
7;.00005952 —0.0000297é_
~ |0.002 ~0.000199
- 0.002 0.0011685
0. 002 -0.001237 _J
[0.00005952  -0.00002976  -0.00005952 |
0.002 -0.000199 0.002
~ |o.002 0.0011685 -0.002
" 10.002 -0.001237 0.002
0.002 0.000501 -0.002
0.002 -0.00052 0.002 |
[0.00005952  -0.00002976  -0.00005952 |
0.002 -0.0005 0.002
_ 0.002 0.0005 -0.002
~ o.002 -0.0005 0.002
0.002 0.0005 -0.002
0.002 -0.0005 0.002
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TABLE III.- F REQUIRED TO CHANGE DYNAMICS FOR FOUR-MODE MODEL

[’I‘wo control actuators; subscript 1 denotes first flexible mode:l

r alp 1T r
Se ~ %Y, ! ! ! ! t ~Se * Qg
8400 250 o - wa : o] } 0 : 0 250 250 0 : 0 : —_—
24 B4 l : ! : ) w2u - ‘*’eu
o i : : : : i
exact i St - o | ' | i
1Sy 11, ! ! i |
~-8400 250 0] : _— ! 0 ! 0 -250 250 0 ' 0 1 0
W -w ! ! { 1
13y 1, 1 —J | )

2
(s2 + 2zws + w2)" = s% + qzwsd + 202(1 + 222)s? + 4zwds + w?

= s4 + Ps3 + Q52 + Rs + S

. 8458 248.3 Ky 0 0 0 Dg 0 0- o}
Foffset =
-8416 250.5 o} Ky 0 (o} 0 Dy 0 (o}
52 + 2Cws + wz = 52 + Ds + K

aFirst four columns only shown.




TABLE IV.- COMPARISON OF CONTROL-FORCE REQUIREMENTS FOR

PITCH AND ZERO COMMANDS

Ebur—mode model with one control actuator at each end of beamﬂ

0.01-rad pitch

Zero command,

6=A1=A2=A3=O.Ol

d
Wy Ce comman wy = 0.1 rad/sec, Cl = 1.0jw; = 0.5 rad/sec, Cl =1.0
£, £, fq £, £4 £,

0.110.1 0.29 -0.48 -(f1 + 0.28) -4.08 -(f; + 7.48)
.1 .5 .29 -.50 -4.10

.111.0 .29 -.57 -4.17

.511.0 182.2 -180.8 -184.4
1.0{1.0 2917 -2845 -2849
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TABLE V.- F REQUIRED TO CHANGE DYNAMICS FOR SIX-MODE MODEL

[’I‘wo control actuators; subscript 1 denotes first flexible mode]

~ q9r , =
1 ] I 1 ]
Yo = e, * %Ys, | i | | i
8400 250 || | 0 y 0 4 o 3 0o G o0
. (V25 7 90u)(May 0, ! | ! |
F = 1 ] ] I I
exact E Up - Sqwy + Ql“’% i E i i
-8400 250 0 o 0 { 0o | o | o
P03y 7o) (s, T ey) : ! !
— B —
r a7 1 U _Un 4 Sew _ w2 | 1 _ + 2 1
! : 9 oW2 T QW ! i Up — Sgyg + Qg !
250 250 D “) u : 0 : u u | o
! bo(W2y 7 w0y) (e T way) | ! (Way — woy)(Way - ©92,) :
+ { | 1 1 |
| 1 ] 2 1 1 2
: : : -Ul + Slw3u - Qlw3u : : Ul - Slwsu + lesu
-250 250 o 1 o I 0 o T o Vo T o) 0 T T o Ve T o
! ! :( 3u lu)( 5u 3U)I :( Su 1u)( Su BU)_J

3
(s? + 2tws + w?)" = s + 6zwsS + 3w2(1 + 472)s4 + 8rw3 (1.5 + 2)s3 + 3wd(1 + 422)s2 + 6rwds + wWd

= 5% + ps® + 0s% + Rs3 + 852 + Ts + U

a,. .
First six columns only shown.
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