10,481 research outputs found
Absorption line series and autoionization resonance structure analysis in the ultraviolet spectrum of Sr I
Photoelectric spectrometer to measure absorption line series and autoionization resonance in ultraviolet spectrum of strontium vapo
Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract
We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do
Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes
Abstract The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 double-dip storm. We show that in order to explain the very different behavior in the two dips, diffusion in all three dimensions (energy, pitch angle, and Lo) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The results illustrate the utility of the high resolution, comprehensive set of Van Allen Probes\u27 measurements in studying the balance between source and loss in the radiation belt, a principal goal of the mission. Key Points DREAM3D uses event-specific driving conditions measured by Van Allen Probes Electron dropout is due to outward radial diffusion to compressed magnetopause Event-specific chorus and seed electrons are necessary for the enhancement
Tincurrin : a new biscuit wheat
Although a demand has existed both locally and overseas for soft wheat suitable for biscuits, cakes and various confectioneries, production has been very limited.
In 1978 farmers in the soft wheat area will be able to grow the higher yielding variety Tincurrin.
It is recommended for general sowing to replace all varieties grown at present in the soft wheat areas as defined.Exceptions may prevail in areas prone to rust snd septoria problems
Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21-24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L\u3e5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times
Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP
The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
We present results from a 150 ksec Suzaku observation of the Seyfert 1.5 NGC
3516 in October 2005. The source was in a relatively highly absorbed state. Our
best-fit model is consistent with the presence of a low-ionization absorber
which has a column density near 5 * 10^{22} cm^{-2} and covers most of the
X-ray continuum source (covering fraction 96-100%). A high-ionization absorbing
component, which yields a narrow absorption feature consistent with Fe K XXVI,
is confirmed. A relativistically broadened Fe K alpha line is required in all
fits, even after the complex absorption is taken into account; an additional
partial-covering component is an inadequate substitute for the continuum
curvature associated with the broad Fe line. A narrow Fe K alpha emission line
has a velocity width consistent with the Broad Line Region. The low-ionization
absorber may be responsible for producing the narrow Fe K alpha line, though a
contribution from additional material out of the line of sight is possible. We
include in our model soft band emission lines from He- and H-like ions of N, O,
Ne and Mg, consistent with photo-ionization, though a small contribution from
collisionally-ionized emission is possible.Comment: Accepted for publication in PASJ (Suzaku second special issue). 36
pages, 10 figure
Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior
Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L \u3e 6.07 over about 6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (∼0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60%-80% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 h. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale. Key Points Rapid outward extension of electron radiation belt observed by RBSP and THEMIS A two-step scenario to explain the rapid flux enchantment Differentiating between contributions of substorm injections and chorus waves
- …