304 research outputs found
Electronic Structure, Localization and Spin-State Transition in Cu-substituted FeSe: FeCuSe
We report density functional studies of the FeCuSe alloy done
using supercell and coherent potential approximation methods. Magnetic behavior
was investigated using the disordered local moment approach. We find that Cu
occurs in a nominal configuration and is highly disruptive to the
electronic structure of the Fe sheets. This would be consistent with a metal
insulator transition due to Anderson localization. We further find a strong
cross over from a weak moment itinerant system to a local moment magnet at . We associate this with the experimentally observed jump near
this concentration. Our results are consistent with the characterization of
this concentration dependent jump as a transition to a spin-glass
Properties of the quaternary half-metal-type Heusler alloy CoMnFeSi
This work reports on the bulk properties of the quaternary Heusler alloy
CoMnFeSi with the Fe concentration . All samples, which
were prepared by arc melting, exhibit long range order over the complete
range of Fe concentration. Structural and magnetic properties of
CoMnFeSi Heusler alloys were investigated by means of X-ray
diffraction, high and low temperature magnetometry, M{\"o\ss}bauer
spectroscopy, and differential scanning calorimetry. The electronic structure
was explored by means of high energy photo emission spectroscopy at about 8 keV
photon energy. This ensures true bulk sensitivity of the measurements. The
magnetization of the Fe doped Heusler alloys is in agreement with the values of
the magnetic moments expected for a Slater-Pauling like behavior of
half-metallic ferromagnets. The experimental findings are discussed on the hand
of self-consistent calculations of the electronic and magnetic structure. To
achieve good agreement with experiment, the calculations indicate that on-site
electron-electron correlation must be taken into account, even at low Fe
concentration. The present investigation focuses on searching for the
quaternary compound where the half-metallic behavior is stable against outside
influences. Overall, the results suggest that the best candidate may be found
at an iron concentration of about 50%.Comment: 26 pages, 9 figures Phys. Rev. B accepte
Electronic structure and spectroscopy of the quaternary Heusler alloy CoCrFeAl
Quaternary Heusler alloys CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure and spectroscopic properties were calculated using the full
relativistic Korringa-Kohn-Rostocker method with coherent potential
approximation to account for the random distribution of Cr and Fe atoms as well
as random disorder. Magnetic effects are included by the use of spin dependent
potentials in the local spin density approximation.
Magnetic circular dichroism in X-ray absorption was measured at the
edges of Co, Fe, and Cr of the pure compounds and the alloy in order to
determine element specific magnetic moments. Calculations and measurements show
an increase of the magnetic moments with increasing iron content. Resonant
(560eV - 800eV) soft X-ray as well as high resolution - high energy (keV) hard X-ray photo emission was used to probe the density of the
occupied states in CoCrFeAl.Comment: J.Phys.D_Appl.Phys. accepte
Substituting the main group element in cobalt - iron based Heusler alloys: CoFeAlSi
This work reports about electronic structure calculations for the Heusler
compound CoFeAlSi. Particular emphasis was put on the role of
the main group element in this compound. The substitution of Al by Si leads to
an increase of the number of valence electrons with increasing Si content and
may be seen as electron-doping. Self-consistent electronic structure
calculations were performed to investigate the consequences of the electron
doping for the magnetic properties. The series CoFeAlSi is
found to exhibit half-metallic ferromagnetism and the magnetic moment follows
the Slater-Pauling rule. It is shown that the electron-doping stabilises the
gap in the minority states for .Comment: J. Phys. D (accepted
Orientation dependence of the sticking probability of NO at Ni(100)
Fecher GH, Volkmer M, Pawlitzky B, Böwering N, Heinzmann U. Orientation dependence of the sticking probability of NO at Ni(100). Vacuum. 1990;41(1-3):265-268
Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory
There are two fundamentally different approaches to specifying and verifying
properties of systems. The logical approach makes use of specifications given
as formulae of temporal or modal logics and relies on efficient model checking
algorithms; the behavioural approach exploits various equivalence or refinement
checking methods, provided the specifications are given in the same formalism
as implementations.
In this paper we provide translations between the logical formalism of
Hennessy-Milner logic with greatest fixed points and the behavioural formalism
of disjunctive modal transition systems. We also introduce a new operation of
quotient for the above equivalent formalisms, which is adjoint to structural
composition and allows synthesis of missing specifications from partial
implementations. This is a substantial generalisation of the quotient for
deterministic modal transition systems defined in earlier papers
Electron correlations in CoMnFeSi Heusler compounds
This study presents the effect of local electronic correlations on the
Heusler compounds CoMnFeSi as a function of the concentration
. The analysis has been performed by means of first-principles
band-structure calculations based on the local approximation to spin-density
functional theory (LSDA). Correlation effects are treated in terms of the
Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is
implemented within the Korringa-Kohn-Rostoker (KKR) Green's function method.
In good agreement with the available experimental data the magnetic and
spectroscopic properties of the compound are explained in terms of strong
electronic correlations. In addition the correlation effects have been analysed
separately with respect to their static or dynamical origin. To achieve a
quantitative description of the electronic structure of
CoMnFeSi both static and dynamic correlations must be treated
on equal footing.Comment: 12 pages, 5 figure
Seebeck coefficients of half-metallic ferromagnets
In this report the Co2 based Heusler compounds are discussed as potential
materials for spin voltage generation. The compounds were synthesized by
arcmelting and consequent annealing. Band structure calculations were performed
and revealed the compounds to be half-metallic ferromagnets. Magnetometry was
performed on the samples and the Curie temperatures and the magnetic moments
were determined. The Seebeck coefficients were measured from low to ambient
temperatures for all compounds. For selected compounds high temperature
measurements up to 900 K were performed.Comment: accepted contribution o the Special Issue "Spin Caloritronics" of
Solid State Communication
Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn
In this work the theoretical and experimental investigations of Co2TiZ (Z =
Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is
predicted for all three compounds with only two bands crossing the Fermi energy
in the majority channel. The magnetic moments fulfill the Slater-Pauling rule
and the Curie temperatures are well above room temperature. All compounds show
a metallic like resistivity for low temperatures up to their Curie temperature,
above the resistivity changes to semiconducting like behavior. A large negative
magnetoresistance of 55% is observed for Co2TiSn at room temperature in an
applied magnetic field of 4T which is comparable to the large negative
magnetoresistances of the manganites. The Seebeck coefficients are negative for
all three compounds and reach their maximum values at their respective Curie
temperatures and stay almost constant up to 950 K. The highest value achieved
is -52muV/K m for Co2TiSn which is large for a metal. The combination of
half-metallicity and the constant large Seebeck coefficient over a wide
temperature range makes these compounds interesting materials for
thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure
- …