605 research outputs found

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Full text link
    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86±0.35 MJup2.86\pm0.35~{\rm M_{Jup}} and a radius of 1.130.18+0.26 RJup1.13^{+0.26}_{-0.18}~{\rm R_{Jup}}, and it orbits a G0, metallic ([Fe/H]=0.35±0.150.35\pm0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq=1000±45T_{eq}=1000 \pm 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82±0.52 MJup2.82\pm 0.52~{\rm M_{Jup}} and a radius of 1.45±0.16 RJup1.45\pm0.16~{\rm R_{Jup}}, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84±0.15 MJup0.84\pm0.15~{\rm M_{Jup}} and requires less extra-dissipation to explain its uncommonly large radius of 1.99±0.18 RJup1.99\pm0.18~{\rm R_{Jup}}. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46±0.17 M1.46\pm0.17~M_{\odot} and 1.54±0.09 M1.54 \pm 0.09~M_{\odot}, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system

    Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this recordNitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun - so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N 2 , CO 2 and CH 4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.We thank three referees for constructive suggestions that improved the manuscript. This work was supported by NASA GSFC Science Task Group 263 funds. V. Airapetian performed the part of this work while staying at ELSI/Tokyo Tech

    Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Get PDF

    Quasi-molecular lines in Lyman wings of cool DA white dwarfs; Application to FUSE observations of G231-40

    Full text link
    We present new theoretical calculations of the total line profiles of Lyman alpha and Lyman beta which include perturbations by both neutral hydrogen AND protons and all possible quasi-molecular states of H_2 and H_2^+. They are used to improve theoretical modeling of synthetic spectra for cool DA white dwarfs. We compare them with FUSE observation of G231-40. The appearance of the line wings between Lyman alpha and Lyman beta is shown to be sensitive to the relative abundance of hydrogen ions and neutral atoms, and thereby to provide a temperature diagnostic for stellar atmospheres and laboratory plasmas.Comment: 6 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD209458b

    Full text link
    Four transits of the planet orbiting the star HD209458 were observed with the STIS spectrograph on board HST. The wavelength domain (1180-1710A) includes HI as well as CI, CII, CIV, NV, OI, SI, SiII, SiIII and SiIV lines. During the transits, absorptions are detected in HI, OI and CII (5+/-2%, 13+/-4.5% and 7.5+/-3.5%, respectively). No absorptions are detected for other lines. The 5% mean absorption over the whole HI Lyman alpha line is consistent with the previous detection at higher resolution (Vidal-Madjar et al. 2003). The absorption depths in OI and CII show that oxygen and carbon are present in the extended upper atmosphere of HD209458b. These species must be carried out up to the Roche lobe and beyond, most likely in a state of hydrodynamic escape.Comment: 6 pages, 4 figures, 1 table, submitted to ApJ Letters, revised version with slightly revisited absorption depth estimate

    SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter

    Full text link
    We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 ±\pm 0.085 MJup_{Jup} and a radius of 1.325 ±\pm 0.043 RJup_{Jup} which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 ±\pm 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 ±\pm 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 ±\pm 0.04.Comment: 11 pages, 9 figure

    PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    Full text link
    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD16702, an unresolved face-on binary which exhibits bisector variations.Comment: Accepted for publication in MNRA
    corecore