5 research outputs found

    Bulk ion heating with ICRH in JET DT plasmas

    Get PDF
    Reactor relevant ICRH scenarios have been assessed during DT experiments on the JET tokamak using H mode divertor discharges with ITER-like shapes and safety factors. Deuterium minority heating in tritium plasmas was demonstrated for the first time. For 9% deuterium, an ICRH power of 6 MW gave 1.66 MW of fusion power from reactions between suprathermal deuterons and thermal tritons. The Q value of the steady state discharge reached 0.22 for the length of the RF flat-top (2.7 s), corresponding to three plasma energy replacement times. The Doppler broadened neutron spectrum showed a deuteron energy of 125 keV, which was optimum for fusion and close to the critical energy. Thus, strong bulk ion heating was obtained at the same time as high fusion efficiency. Deuterium fractions around 20% produced the strongest ion heating together with a strong reduction of the suprathermal deuteron tail. The ELMs had low amplitude and high frequency and each ELM transported less plasma energy content than the 1% required by ITER. The energy confinement time, on the ITERH97-P scale, was 0.90, which is sufficient for ignition in ITER. 3He minority heating, in approximately 50:50 D:T plasmas with up to 10% 3He, also demonstrated strong bulk ion heating. Central ion temperatures up to 13 keV were achieved, together with central electron temperatures up to 12 keV. The normalized H mode confinement time was 0.95. Second harmonic tritium heating produced energetic tritons above the critical energy. This scheme heats the electrons in JET, unlike in ITER where the lower power density will allow mainly ion heating. The inverted scenario of tritium minority ICRH in a deuterium plasma was demonstrated as a successful heating method producing both suprathermal neutrons and bulk ion heating. Theoretical calculations of the DT reactivity mostly give excellent agreement with the measured reaction rates

    D-T fusion with ion cyclotron resonance heating in the JET tokamak

    No full text
    Ion cyclotron resonance heating (ICRH) experiments have been carried out in JET D-T plasmas using scenarios applicable to reactors. Deuterium minority heating in tritium plasmas is used for the first time and produces 1.66 MW of D-T fusion power for an ICRH power of 6 MW. The Q value is 0.22, which is a record for steady state discharges. Fundamental He-3 minority ICRH, in both 50:50 D-T and tritium dominated plasmas, generates strong bulk ion heating and ion temperatures up to 13 keV. Second harmonic tritium ICRH is seen to heat mainly the electrons as expected for JET conditions. All three schemes produce H-mode plasmas

    Results from the TARC experiment : spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    Get PDF
    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n ⩾1 MeV ) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99 Tc, 129 I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99 Tc or 129 I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications. (Elsevier
    corecore