707 research outputs found

    Developing the evidence base for adult social care practice: The NIHR School for Social Care Research

    Get PDF
    In a foreword to 'Shaping the Future of Care Together', Prime Minister Gordon Brown says that a care and support system reflecting the needs of our times and meeting our rising aspirations is achievable, but 'only if we are prepared to rise to the challenge of radical reform'. A number of initiatives will be needed to meet the challenge of improving social care for the growing older population. Before the unveiling of the green paper, The National Institute for Health Research (NIHR) announced that it has provided 15m pounds over a five-year period to establish the NIHR School for Social Care Research. The School's primary aim is to conduct or commission research that will help to improve adult social care practice in England. The School is seeking ideas for research topics, outline proposals for new studies and expert advice in developing research methods

    Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field

    Full text link
    We consider a theoretical model for a nonlinear nanomechanical resonator coupled to a superconducting microwave resonator. The nanomechanical resonator is driven parametrically at twice its resonance frequency, while the superconducting microwave resonator is driven with two tones that differ in frequency by an amount equal to the parametric driving frequency. We show that the semi-classical approximation of this system has an interesting fixed point bifurcation structure. In the semi-classical dynamics a transition from stable fixed points to limit cycles is observed as one moves from positive to negative detuning. We show that signatures of this bifurcation structure are also present in the full dissipative quantum system and further show that it leads to mixed state entanglement between the nanomechanical resonator and the microwave cavity in the dissipative quantum system that is a maximum close to the semi-classical bifurcation. Quantum signatures of the semi-classical limit-cycles are presented.Comment: 36 pages, 18 figure

    Entanglement and bifurcations in Jahn-Teller models

    Get PDF
    We compare and contrast the entanglement in the ground state of two Jahn-Teller models. The E⊗βE\otimes\beta system models the coupling of a two-level electronic system, or qubit, to a single oscillator mode, while the E⊗ϵE\otimes\epsilon models the qubit coupled to two independent, degenerate oscillator modes. In the absence of a transverse magnetic field applied to the qubit, both systems exhibit a degenerate ground state. Whereas there always exists a completely separable ground state in the E⊗βE\otimes\beta system, the ground states of the E⊗ϵE\otimes\epsilon model always exhibit entanglement. For the E⊗βE\otimes\beta case we aim to clarify results from previous work, alluding to a link between the ground state entanglement characteristics and a bifurcation of a fixed point in the classical analogue. In the E⊗ϵE\otimes\epsilon case we make use of an ansatz for the ground state. We compare this ansatz to exact numerical calculations and use it to investigate how the entanglement is shared between the three system degrees of freedom.Comment: 11 pages, 9 figures, comments welcome; 2 references adde

    Synchronization of many nano-mechanical resonators coupled via a common cavity field

    Get PDF
    Using amplitude equations, we show that groups of identical nano-mechanical resonators, interacting with a common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to the cavity with a strength dependent on the square sum of the individual mechanical-microwave couplings. Classically this system is dominated by periodic behaviour which, when analyzed using amplitude equations, can be shown to exhibit multi-stability. In contrast groups of sufficiently dissimilar nano-mechanical oscillators may lose synchronization and oscillate out of phase at significantly higher amplitudes. Further the method by which synchronization is lost resembles that for large amplitude forcing which is not of the Kuramoto form.Comment: 23 pages, 11 figure

    A simple method to determine soil–water retention curves of compacted active clays

    Get PDF
    Determining the Soil Water Retention Curve (SWRC) of an active clay constitutes a challenge due to the significant, and sometimes irreversible, volume changes that occur during wetting and drying cycles. A novel yet simple method of experimentally determining the evolution of the SWRCs with moisture cycles is presented based on the results of a rigorous experimental study. Its purpose is to support the modelling of water flux in earthworks exposed to weather cycles that cause deterioration. Firstly, three SWRC branches (the primary drying, a scanning drying, and a scanning wetting branch) are measured and used to fit the proposed generic SWRC semi-empirical model in terms of water ratio, that, in the adsorptive region, is independent of the compaction conditions (void ratio and water content at compaction). Soil Shrink-Swell Curves (SSSCs) in terms of water ratio versus void ratio, that are easy to measure, can be determined for different compaction conditions over several drying and wetting cycles. Finally, the SSSCs are combined with the generic SWRC model to determine the evolution of the SWRCs with moisture cycles for the compaction conditions of interest. This method is demonstrated for two London clays of high and very high plasticity. Samples were compacted in five different conditions, varying in gravimetric water content and dry density, and were cycled six times between 1 and 80 MPa of total suction. The generic SWRC model was fitted to the experimental data. The model was able to estimate the SWRC in terms of degree of saturation over the six drying-wetting cycles without propagation of error. The significance of the research is that SWRC can now be determined over a range of wetting and drying cycles quickly and simply and enable modelling of deterioration of clays fills due to the action of weather to be accurate

    Stabilizing Open Quantum Systems by Markovian Reservoir Engineering

    Full text link
    We study open quantum systems whose evolution is governed by a master equation of Kossakowski-Gorini-Sudarshan-Lindblad type and give a characterization of the convex set of steady states of such systems based on the generalized Bloch representation. It is shown that an isolated steady state of the Bloch equation cannot be a center, i.e., that the existence of a unique steady state implies attractivity and global asymptotic stability. Necessary and sufficient conditions for the existence of a unique steady state are derived and applied to different physical models including two- and four-level atoms, (truncated) harmonic oscillators, composite and decomposable systems. It is shown how these criteria could be exploited in principle for quantum reservoir engineeing via coherent control and direct feedback to stabilize the system to a desired steady state. We also discuss the question of limit points of the dynamics. Despite the non-existence of isolated centers, open quantum systems can have nontrivial invariant sets. These invariant sets are center manifolds that arise when the Bloch superoperator has purely imaginary eigenvalues and are closely related to decoherence-free subspaces.Comment: 16 pages, 4 figures, marginally revised version, mainly fixed some notational inconsistencies that had crept in when we change the notation in some figures without changing the captions and tex

    Analysis of the shearing instability in nonlinear convection and magnetoconvection

    Get PDF
    Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced

    A minimal model for chaotic shear banding in shear-thickening fluids

    Full text link
    We present a minimal model for spatiotemporal oscillation and rheochaos in shear-thickening complex fluids at zero Reynolds number. In the model, a tendency towards inhomogeneous flows in the form of shear bands combines with a slow structural dynamics, modelled by delayed stress relaxation. Using Fourier-space numerics, we study the nonequilibrium `phase diagram' of the fluid as a function of a steady mean (spatially averaged) stress, and of the relaxation time for structural relaxation. We find several distinct regions of periodic behavior (oscillating bands, travelling bands, and more complex oscillations) and also regions of spatiotemporal rheochaos. A low-dimensional truncation of the model retains the important physical features of the full model (including rheochaos) despite the suppression of sharply defined interfaces between shear bands. Our model maps onto the FitzHugh-Nagumo model for neural network dynamics, with an unusual form of long-range coupling.Comment: Revised version (in particular, new section III.E. and Appendix A

    Intersections of homogeneous Cantor sets and beta-expansions

    Full text link
    Let Γβ,N\Gamma_{\beta,N} be the NN-part homogeneous Cantor set with β∈(1/(2N−1),1/N)\beta\in(1/(2N-1),1/N). Any string (jℓ)ℓ=1N(j_\ell)_{\ell=1}^\N with jℓ∈{0,±1,...,±(N−1)}j_\ell\in\{0,\pm 1,...,\pm(N-1)\} such that t=∑ℓ=1Njℓβℓ−1(1−β)/(N−1)t=\sum_{\ell=1}^\N j_\ell\beta^{\ell-1}(1-\beta)/(N-1) is called a code of tt. Let Uβ,±N\mathcal{U}_{\beta,\pm N} be the set of t∈[−1,1]t\in[-1,1] having a unique code, and let Sβ,±N\mathcal{S}_{\beta,\pm N} be the set of t∈Uβ,±Nt\in\mathcal{U}_{\beta,\pm N} which make the intersection Γβ,N∩(Γβ,N+t)\Gamma_{\beta,N}\cap(\Gamma_{\beta,N}+t) a self-similar set. We characterize the set Uβ,±N\mathcal{U}_{\beta,\pm N} in a geometrical and algebraical way, and give a sufficient and necessary condition for t∈Sβ,±Nt\in\mathcal{S}_{\beta,\pm N}. Using techniques from beta-expansions, we show that there is a critical point βc∈(1/(2N−1),1/N)\beta_c\in(1/(2N-1),1/N), which is a transcendental number, such that Uβ,±N\mathcal{U}_{\beta,\pm N} has positive Hausdorff dimension if β∈(1/(2N−1),βc)\beta\in(1/(2N-1),\beta_c), and contains countably infinite many elements if β∈(βc,1/N)\beta\in(\beta_c,1/N). Moreover, there exists a second critical point αc=[N+1−(N−1)(N+3) ]/2∈(1/(2N−1),βc)\alpha_c=\big[N+1-\sqrt{(N-1)(N+3)}\,\big]/2\in(1/(2N-1),\beta_c) such that Sβ,±N\mathcal{S}_{\beta,\pm N} has positive Hausdorff dimension if β∈(1/(2N−1),αc)\beta\in(1/(2N-1),\alpha_c), and contains countably infinite many elements if β∈[αc,1/N)\beta\in[\alpha_c,1/N).Comment: 23 pages, 4 figure
    • …
    corecore