850 research outputs found

    Aging after shear rejuvenation in a soft glassy colloidal suspension: evidence for two different regimes

    Full text link
    The aging dynamics after shear rejuvenation in a glassy, charged clay suspension have been investigated through dynamic light scattering (DLS). Two different aging regimes are observed: one is attained if the sample is rejuvenated before its gelation and one after the rejuvenation of the gelled sample. In the first regime, the application of shear fully rejuvenates the sample, as the system dynamics soon after shear cessation follow the same aging evolution characteristic of normal aging. In the second regime, aging proceeds very fast after shear rejuvenation, and classical DLS cannot be used. An original protocol to measure an ensemble averaged intensity correlation function is proposed and its consistency with classical DLS is verified. The fast aging dynamics of rejuvenated gelled samples exhibit a power law dependence of the slow relaxation time on the waiting time.Comment: 7 pages, 6 figure

    Seismic Vulnerability Assessment of a Historical Church: Limit Analysis and Nonlinear Finite Element Analysis

    Get PDF
    The seismic vulnerability of a historical Basilica church located in Italy is studied by means of limit analysis and nonlinear finite element (FE) analysis. Attention is posed to the failure mechanisms involving the façade of the church and its interaction with the lateral walls. In particular, the limit analysis and the nonlinear FE analysis provide an estimate of the load collapse multiplier of the failure mechanisms. Results obtained from both approaches are in agreement and can support the selection of possible retrofitting measures to decrease the vulnerability of the church under seismic loads

    Biomonitoring of metals in children living in an urban area and close to waste incinerators

    Get PDF
    The impact of waste incinerators is usually examined by measuring environmental pollutants. Biomonitoring has been limited, until now, to few metals and to adults. We explored accumulation of a comprehensive panel of metals in children free-living in an urban area hosting two waste incinerators. Children were divided by georeferentiation in exposed and control groups, and toenail concentrations of 23 metals were thereafter assessed. The percentage of children having toenail metal concentrations above the limit of detection was higher in exposed children than in controls for Al, Ba, Mn, Cu, and V. Exposed children had higher absolute concentrations of Ba, Mn, Cu, and V, as compared with those living in the reference area. The Tobit regression identified living in the exposed area as a significant predictor of Ba, Ni, Cu, Mn, and V concentrations, after adjusting for covariates. The concentrations of Ba, Mn, Ni, and Cu correlated with each other, suggesting a possible common source of emission. Exposure to emissions derived from waste incinerators in an urban setting can lead to body accumulation of specific metals in children. Toenail metal concentration should be considered a noninvasive and adequate biomonitoring tool and an early warning indicator which should integrate the environmental monitoring of pollutants

    Nonlinear Gamow vectors in nonlocal optical propagation

    Get PDF
    Shock waves dominate in a wide variety of fields in physics dealing with nonlinear phenomena, nevertheless the description of their evolution is not resolved for the entire dynamics. Here we propose an analytical method based on Gamow vectors, which belong to irreversible quantum mechanics. We theoretically and experimentally show the appearance of these decaying states during shock evolution allowing to describe the whole wave propagation. These results open new ways to the control of extreme nonlinear regimes such as supercontinuum generation or in the analogies of fundamental physical theories

    Modelling RT-qPCR cycle-threshold using digital PCR data for implementing SARS-CoV-2 viral load studies

    Get PDF
    Objectives To exploit the features of digital PCR for implementing SARS-CoV-2 observational studies by reliably including the viral load factor expressed as copies/μL. Methods A small cohort of 51 Covid-19 positive samples was assessed by both RT-qPCR and digital PCR assays. A linear regression model was built using a training subset, and its accuracy was assessed in the remaining evaluation subset. The model was then used to convert the stored cycle threshold values of a large dataset of 6208 diagnostic samples into copies/μL of SARSCoV- 2. The calculated viral load was used for a single cohort retrospective study. Finally, the cohort was randomly divided into a training set (n = 3095) and an evaluation set (n = 3113) to establish a logistic regression model for predicting case-fatality and to assess its accuracy. Results The model for converting the Ct values into copies/μL was suitably accurate. The calculated viral load over time in the cohort of Covid-19 positive samples showed very low viral loads during the summer inter-epidemic waves in Italy. The calculated viral load along with gender and age allowed building a predictive model of case-fatality probability which showed high specificity (99.0%) and low sensitivity (21.7%) at the optimal threshold which varied by modifying the threshold (i.e. 75% sensitivity and 83.7% specificity). Alternative models including categorised cVL or raw cycle thresholds obtained by the same diagnostic method also gave the same performance. Conclusion The modelling of the cycle threshold values using digital PCR had the potential of fostering studies addressing issues regarding Sars-CoV-2; furthermore, it may allow setting up predictive tools capable of early identifying those patients at high risk of case-fatality already at diagnosis, irrespective of the diagnostic RT-qPCR platform in use. Depending upon the epidemiological situation, public health authority policies/aims, the resources available and the thresholds used, adequate sensitivity could be achieved with acceptable low specificity

    Age-dependent skewing of X chromosome inactivation appears delayed in centenarians\u2019 offspring. Is there a role for allelic imbalance in Healthy Aging and Longevity?

    Get PDF
    Recently, it has been proposed that age-related X chromosome inactivation (XCI) skewing can clinically result in late-onset X-linked disorders. This observation leads to hypothesize that age-related skewed XCI might also influence lifespan in women. To investigate this issue, we employed a new experimental model of longevity and healthy aging including 55 female centenarians, 40 of their offspring, 33 age-matched offspring of both non-long-lived parents and 41 young women. Peripheral blood DNA from 169 females was screened for heterozygosity at the HUMARA locus. We confirmed that skewing of XCI is an age-dependent phenomenon. However, skewed XCI was significantly less severe and frequent in centenarians' offspring [degree of skewing (DS) = 0.16 \ub1 0.02] compared to age-matched offspring of both non-long-lived parents (DS = 0.24 \ub1 0.02) (P < 0.05). A second goal was to assess whether changes in XCI pattern could be a consequence of loss of methylation on X chromosome. Using a methylation array evaluating 1085 CpG sites across X chromosome and eleven CpG sites located at HUMARA locus, no differences in methylation levels and profiles emerged between all groups analysed, thus suggesting that age-associated epigenetic changes could not influence HUMARA results. In conclusion, the results presented herein highlight for the first time an interesting link between skewing of XCI and healthy aging and longevity. We speculate that the allelic imbalance produced by XCI skewing may compromise the cooperative and compensatory organization occurring between the two cell populations that make up the female mosaic
    • …
    corecore