564 research outputs found

    Lyman Alpha and MgII as Probes of Galaxies and their Environments

    Full text link
    Ly{\alpha} emission, Ly{\alpha} absorption and MgII absorption are powerful tracers of neutral hydrogen. Hydrogen is the most abundant element in the universe and plays a central role in galaxy formation via gas accretion and outflows, as well as being the precursor to molecular clouds, the sites of star formation. Since 21cm emission from neutral hydrogen can only be directly observed in the local universe, we rely on Ly{\alpha} emission, and Ly{\alpha} and MgII absorption to probe the physics that drives galaxy evolution at higher redshifts. Furthermore, these tracers are sensitive to a range of hydrogen densities that cover the interstellar medium, the circumgalactic medium and the intergalactic medium, providing an invaluable means of studying gas physics in regimes where it is poorly understood. At high redshift, Ly{\alpha} emission line searches have discovered thousands of star-forming galaxies out to z = 7. The large Ly{\alpha} scattering cross-section makes observations of this line sensitive to even very diffuse gas outside of galaxies. Several thousand more high-redshift galaxies are known from damped Ly{\alpha} absorption lines and absorption by the MgII doublet in quasar and GRB spectra. MgII, in particular, probes metal-enriched neutral gas inside galaxy haloes in a wide range of environments and redshifts (0.1 < z < 6.3), including the so-called redshift desert. Here we review what observations and theoretical models of Ly{\alpha} emission, Ly{\alpha} and MgII absorption have told us about the interstellar, circumgalactic and intergalactic medium in the context of galaxy formation and evolution.Comment: 59 Pages, 19 Figures, 1 Table. Accepted for publication in Publications of the Astronomical Society of the Pacifi

    Discovery of Multi-Phase Cold Accretion in a Massive Galaxy at z=0.7

    Full text link
    We present detailed photo+collisional ionization models and kinematic models of the multi-phase absorbing gas, detected within the HST/COS, HST/STIS, and Keck/HIRES spectra of the background quasar TON 153, at 104 kpc along the projected minor axis of a star-forming spiral galaxy (z=0.6610). Complementary g'r'i'Ks photometry and stellar population models indicate that the host galaxy is dominated by a 4 Gyr stellar population with slightly greater than solar metallicity and has an estimated log(M*)=11 and a log(Mvir)=13. Photoionization models of the low ionization absorption, (MgI, SiII, MgII and CIII) which trace the bulk of the hydrogen, constrain the multi-component gas to be cold (logT=3.8-5.2) and metal poor (-1.68<[X/H]<-1.64). A lagging halo model reproduces the low ionization absorption kinematics, suggesting gas coupled to the disk angular momentum, consistent with cold accretion mode material in simulations. The CIV and OVI absorption is best modeled in a separate collisionally ionized metal-poor (-2.50<[X/H]<-1.93) warm phase with logT=5.3. Although their kinematics are consistent with a wind model, given the 2-2.5dex difference between the galaxy stellar metallicity and the absorption metallicity indicates the gas cannot arise from galactic winds. We discuss and conclude that although the quasar sight-line passes along the galaxy minor axis at projected distance of 0.3 virial radii, well inside its virial shock radius, the combination of the relative kinematics, temperatures, and relative metallicities indicated that the multi-phase absorbing gas arises from cold accretion around this massive galaxy. Our results appear to contradict recent interpretations that absorption probing the projected minor axis of a galaxy is sampling winds.Comment: 16 pages, 11 figures, accepted for publication in MNRA

    Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback

    Full text link
    We present observations of 50 pairs of redshift z ~ 0.2 star-forming galaxies and background quasars. These sightlines probe the circumgalactic medium (CGM) out to half the virial radius, and we describe the circumgalactic gas kinematics relative to the reference frame defined by the galactic disks. We detect halo gas in MgII absorption, measure the equivalent-width-weighted Doppler shifts relative to each galaxy, and find that the CGM has a component of angular momentum that is aligned with the galactic disk. No net counter-rotation of the CGM is detected within 45 degrees of the major axis at any impact parameter. The velocity offset of the circumgalactic gas correlates with the projected rotation speed in the disk plane out to disk radii of roughly 70 kpc. We confirm previous claims that the MgII absorption becomes stronger near the galactic minor axis and show that the equivalent width correlates with the velocity range of the absorption. We cannot directly measure the location of any absorber along the sightline, but we explore the hypothesis that individual velocity components can be associated with gas orbiting in the disk plane or flowing radially outward in a conical outflow. We conclude that centrifugal forces partially support the low-ionization gas and galactic outflows kinematically disturb the CGM producing excess absorption. Our results firmly rule out schema for the inner CGM that lack rotation and suggest that angular momentum as well as galactic winds should be included in any viable model for the low-redshift CGM.Comment: Accepted for publication in the Astrophysical Journa

    Halo gas cross sections and covering fractions of MgII absorption selected galaxies

    Get PDF
    We examine halo gas cross sections and covering fractions, fc, of intermediate-redshift Mg II absorption selected galaxies. We computed statistical absorber halo radii, Rx, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths Wr(2796) ≥ 0.3 Å, we find 43 ≤ Rx ≤ 88 kpc, depending on the lower luminosity cutoff and the slope, β, of the Holmberg-like luminosity scaling, R ∝ α L^β . The observed distribution of impact parameters, D, are such that several absorbing galaxies lie at D > Rx and several non-absorbing galaxies lie at D ~ 0.5 for our sample. Moreover, the data suggest that halo radii of Mg II absorbing galaxies do not follow a luminosity scaling with β in the range of 0.2–0.28, if fc = 1 as previously reported. However, provided fc ~ 0.5, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with β ≃ 0.2 and R∗ = Rx/√(fc) ~ 110 kpc. No luminosity scaling (β = 0) is also consistent with the observed distribution of impact parameters if fc ≤ 0.37. The data support a scenario in which gaseous halos are patchy and likely have non-symmetric geometric distributions about the galaxies. We suggest that halo gas distributions may not be governed primarily by galaxy mass/luminosity but also by stochastic processes local to the galaxy

    Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3

    Full text link
    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star-formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.Comment: 33 pages, 8 figures, version matching the proofed tex
    • …
    corecore