48,198 research outputs found

    SUSY sine-Gordon theory as a perturbed conformal field theory and finite size effects

    Get PDF
    We consider SUSY sine-Gordon theory in the framework of perturbed conformal field theory. Using an argument from Zamolodchikov, we obtain the vacuum structure and the kink adjacency diagram of the theory, which is cross-checked against the exact S-matrix prediction, first-order perturbed conformal field theory (PCFT), the NLIE method and truncated conformal space approach. We provide evidence for consistency between the usual Lagrangian description and PCFT on the one hand, and between PCFT, NLIE and a massgap formula conjectured by Baseilhac and Fateev, on the other. In addition, we extend the NLIE description to all the vacua of the theory. (C) 2003 Elsevier B.V. All rights reserved

    Double sine-Gordon model revisited

    Get PDF
    We reconsider the mass spectrum of double sine-Gordon theory where recent semiclassical results called into question the previously accepted picture. We use the truncated conformal space approach (TCSA) to investigate the claims. We demonstrate that the numerics supports the original results, and strongly disagrees with those obtained from semiclassical soliton form factor techniques. Besides the numerical analysis, we also discuss the underlying theoretical arguments. (c) 2006 Elsevier B.V. All rights reserved

    Simple Max-Min Ant Systems and the Optimization of Linear Pseudo-Boolean Functions

    Full text link
    With this paper, we contribute to the understanding of ant colony optimization (ACO) algorithms by formally analyzing their runtime behavior. We study simple MAX-MIN ant systems on the class of linear pseudo-Boolean functions defined on binary strings of length 'n'. Our investigations point out how the progress according to function values is stored in pheromone. We provide a general upper bound of O((n^3 \log n)/ \rho) for two ACO variants on all linear functions, where (\rho) determines the pheromone update strength. Furthermore, we show improved bounds for two well-known linear pseudo-Boolean functions called OneMax and BinVal and give additional insights using an experimental study.Comment: 19 pages, 2 figure

    People underestimate the errors made by algorithms for credit scoring and recidivism prediction but accept even fewer errors

    Get PDF
    This study provides the first representative analysis of error estimations and willingness to accept errors in a Western country (Germany) with regards to algorithmic decision-making systems (ADM). We examine people’s expectations about the accuracy of algorithms that predict credit default, recidivism of an offender, suitability of a job applicant, and health behavior. Also, we ask whether expectations about algorithm errors vary between these domains and how they differ from expectations about errors made by human experts. In a nationwide representative study (N = 3086) we find that most respondents underestimated the actual errors made by algorithms and are willing to accept even fewer errors than estimated. Error estimates and error acceptance did not differ consistently for predictions made by algorithms or human experts, but people’s living conditions (e.g. unemployment, household income) affected domain-specific acceptance (job suitability, credit defaulting) of misses and false alarms. We conclude that people have unwarranted expectations about the performance of ADM systems and evaluate errors in terms of potential personal consequences. Given the general public’s low willingness to accept errors, we further conclude that acceptance of ADM appears to be conditional to strict accuracy requirements

    Heat transfer in rotating serpentine passages with trips skewed to the flow

    Get PDF
    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information

    Heat transfer in rotating serpentine passages with selected model orientation for smooth or skewed trip walls

    Get PDF
    Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant
    corecore